细胞间和细胞内线粒体转移:帕金森病中线粒体移植治疗的未来。
Inter and intracellular mitochondrial transfer: Future of mitochondrial transplant therapy in Parkinson's disease.
机构信息
Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
出版信息
Biomed Pharmacother. 2023 Mar;159:114268. doi: 10.1016/j.biopha.2023.114268. Epub 2023 Jan 20.
Parkinson's disease (PD) is marked by the gradual degeneration of dopaminergic neurons and the intracellular build-up of Lewy bodies rich in α-synuclein protein. This impairs various aspects of the mitochondria including the generation of ROS, biogenesis, dynamics, mitophagy etc. Mitochondrial dynamics are regulated through the inter and intracellular movement which impairs mitochondrial trafficking within and between cells. This inter and intracellular mitochondrial movement plays a significant role in maintaining neuronal dynamics in terms of energy and growth. Kinesin, dynein, myosin, Mitochondrial rho GTPase (Miro), and TRAK facilitate the retrograde and anterograde movement of mitochondria. Enzymes such as Kinases along with Calcium (Ca), Adenosine triphosphate (ATP) and the genes PINK1 and Parkin are also involved. Extracellular vesicles, gap junctions, and tunneling nanotubes control intercellular movement. The knowledge and understanding of these proteins, enzymes, molecules, and movements have led to the development of mitochondrial transplant as a therapeutic approach for various disorders involving mitochondrial dysfunction such as stroke, ischemia and PD. A better understanding of these pathways plays a crucial role in establishing extracellular mitochondrial transplant therapy for reverting the pathology of PD. Currently, techniques such as mitochondrial coculture, mitopunch and mitoception are being utilized in the pre-clinical stages and should be further explored for translational value. This review highlights how intercellular and intracellular mitochondrial dynamics are affected during mitochondrial dysfunction in PD. The field of mitochondrial transplant therapy in PD is underlined in particular due to recent developments and the potential that it holds in the near future.
帕金森病(PD)的特征是多巴胺能神经元逐渐退化,细胞内富含α-突触核蛋白的路易体堆积。这会损害线粒体的各个方面,包括 ROS 的产生、生物发生、动力学、线粒体自噬等。线粒体动力学通过细胞内外的运动来调节,这会损害细胞内和细胞间的线粒体运输。这种细胞内外的线粒体运动在维持神经元的能量和生长动态方面起着重要作用。驱动蛋白、动力蛋白、肌球蛋白、线粒体 rho GTP 酶(Miro)和 TRAK 促进线粒体的逆行和顺行运动。激酶等酶类以及钙(Ca)、三磷酸腺苷(ATP)和 PINK1 和 Parkin 等基因也参与其中。细胞外囊泡、间隙连接和隧道纳米管控制细胞间运动。对这些蛋白质、酶、分子和运动的了解和认识导致了线粒体移植作为治疗涉及线粒体功能障碍的各种疾病的方法的发展,如中风、缺血和 PD。更好地理解这些途径对于建立用于逆转 PD 病理学的细胞外线粒体移植治疗至关重要。目前,线粒体共培养、mitopunch 和 mitoception 等技术正在临床前阶段得到应用,应该进一步探索其转化价值。本文综述了 PD 中线粒体功能障碍时细胞内和细胞间线粒体动力学的变化。特别强调了 PD 中线粒体移植治疗领域,因为最近的发展及其在不久的将来的潜力。