Suppr超能文献

出生后12小时内对缺氧缺血性脑病婴儿脑电图分级预测的心率变异性分析

Heart rate variability analysis for the prediction of EEG grade in infants with hypoxic ischaemic encephalopathy within the first 12 h of birth.

作者信息

Pavel Andreea M, Mathieson Sean R, Livingstone Vicki, O'Toole John M, Pressler Ronit M, de Vries Linda S, Rennie Janet M, Mitra Subhabrata, Dempsey Eugene M, Murray Deirdre M, Marnane William P, Boylan Geraldine B

机构信息

INFANT Research Centre, University College Cork, Cork, Ireland.

Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.

出版信息

Front Pediatr. 2023 Jan 4;10:1016211. doi: 10.3389/fped.2022.1016211. eCollection 2022.

Abstract

BACKGROUND AND AIMS

Heart rate variability (HRV) has previously been assessed as a biomarker for brain injury and prognosis in neonates. The aim of this cohort study was to use HRV to predict the electroencephalography (EEG) grade in neonatal hypoxic-ischaemic encephalopathy (HIE) within the first 12 h.

METHODS

We included 120 infants with HIE recruited as part of two European multi-centre studies, with electrocardiography (ECG) and EEG monitoring performed before 12 h of age. HRV features and EEG background were assessed using the earliest 1 h epoch of ECG-EEG monitoring. HRV was expressed in time, frequency and complexity features. EEG background was graded from 0-normal, 1-mild, 2-moderate, 3-major abnormalities to 4-inactive. Clinical parameters known within 6 h of birth were collected (intrapartum complications, foetal distress, gestational age, mode of delivery, gender, birth weight, Apgar at 1 and 5, assisted ventilation at 10 min). Using logistic regression analysis, prediction models for EEG severity were developed for HRV features and clinical parameters, separately and combined. Multivariable model analysis included 101 infants without missing data.

RESULTS

Of 120 infants included, 54 (45%) had normal-mild and 66 (55%) had moderate-severe EEG grade. The performance of HRV model was AUROC 0.837 (95% CI: 0.759-0.914) and clinical model was AUROC 0.836 (95% CI: 0.759-0.914). The HRV and clinical model combined had an AUROC of 0.895 (95% CI: 0.832-0.958). Therapeutic hypothermia and anti-seizure medication did not affect the model performance.

CONCLUSIONS

Early HRV and clinical information accurately predicted EEG grade in HIE within the first 12 h of birth. This might be beneficial when EEG monitoring is not available in the early postnatal period and for referral centres who may want some objective information on HIE severity.

摘要

背景与目的

心率变异性(HRV)此前已被评估为新生儿脑损伤和预后的生物标志物。这项队列研究的目的是利用HRV预测新生儿缺氧缺血性脑病(HIE)出生后12小时内的脑电图(EEG)分级。

方法

我们纳入了120例HIE婴儿,这些婴儿是两项欧洲多中心研究的一部分,在12小时龄前进行了心电图(ECG)和脑电图监测。使用ECG-EEG监测最早的1小时时段评估HRV特征和EEG背景。HRV以时间、频率和复杂性特征表示。EEG背景从0-正常、1-轻度、2-中度、3-重度异常分级到4-无活动。收集出生后6小时内已知的临床参数(产时并发症、胎儿窘迫、孕周、分娩方式、性别、出生体重、1分钟和5分钟时的阿氏评分、10分钟时的辅助通气)。使用逻辑回归分析,分别和联合为HRV特征和临床参数建立EEG严重程度的预测模型。多变量模型分析纳入了101例无缺失数据的婴儿。

结果

在纳入的120例婴儿中,54例(45%)EEG分级为正常-轻度,66例(55%)为中度-重度。HRV模型的曲线下面积(AUROC)为0.837(95%置信区间:0.759-0.914),临床模型的AUROC为0.836(95%置信区间:0.759-0.914)。HRV和临床模型联合的AUROC为0.895(95%置信区间:0.832-0.958)。亚低温治疗和抗癫痫药物不影响模型性能。

结论

早期HRV和临床信息准确预测了出生后12小时内HIE的EEG分级。当出生后早期无法进行EEG监测时,以及对于可能需要一些关于HIE严重程度的客观信息的转诊中心来说,这可能是有益的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验