Suppr超能文献

使用傅里叶变换红外光谱(FTIR)和卷积神经网络测定低乳糖牛奶中的乳糖含量。

Determination of the lactose content in low-lactose milk using Fourier-transform infrared spectroscopy (FTIR) and convolutional neural network.

作者信息

Ribeiro Daniela C S Z, Neto Habib Asseiss, Lima Juliana S, de Assis Débora C S, Keller Kelly M, Campos Sérgio V A, Oliveira Daniel A, Fonseca Leorges M

机构信息

School of Veterinary Medicine, Universidade Federal de Minas Gerais/UFMG, Belo Horizonte, MG, Brazil.

Federal Institute of Mato Grosso do Sul, Três Lagoas, Mato Grosso do Sul, Brazil.

出版信息

Heliyon. 2023 Jan 10;9(1):e12898. doi: 10.1016/j.heliyon.2023.e12898. eCollection 2023 Jan.

Abstract

Demand for low lactose milk and milk products has been increasing worldwide due to the high number of people with lactose intolerance. These low lactose dairy foods require fast, low-cost and efficient methods for sugar quantification. However, available methods do not meet all these requirements. In this work, we propose the association of FTIR (Fourier Transform Infrared) spectroscopy with artificial intelligence to identify and quantify residual lactose and other sugars in milk. Convolutional neural networks (CNN) were built from the infrared spectra without preprocessing the data using hyperparameter adjustment and saliency map. For the quantitative prediction of the sugars in milk, a regression model was proposed, while for the qualitative assessment, a classification model was used. Raw, pasteurized and ultra-high temperature (UHT) milk was added with lactose, glucose, and galactose in six concentrations (0.1-7.0 mg mL) and, in total, 432 samples were submitted to convolutional neural network. Accuracy, precision, sensitivity, specificity, root mean square error, mean square error, mean absolute error, and coefficient of determination (R) were used as evaluation parameters. The algorithms indicated a predictive capacity (accuracy) above 95% for classification, and R of 81%, 86%, and 92% for respectively, lactose, glucose, and galactose quantification. Our results showed that the association of FTIR spectra with artificial intelligence tools, such as CNN, is an efficient, quick, and low-cost methodology for quantifying lactose and other sugars in milk.

摘要

由于乳糖不耐受的人数众多,全球对低乳糖牛奶及奶制品的需求一直在增加。这些低乳糖乳制品需要快速、低成本且高效的糖定量方法。然而,现有的方法并不能满足所有这些要求。在这项工作中,我们提出将傅里叶变换红外(FTIR)光谱与人工智能相结合,以识别和定量牛奶中的残留乳糖及其他糖类。利用超参数调整和显著性图,在不进行数据预处理的情况下,根据红外光谱构建卷积神经网络(CNN)。对于牛奶中糖类的定量预测,提出了一种回归模型,而对于定性评估,则使用了分类模型。向生牛奶、巴氏杀菌牛奶和超高温(UHT)牛奶中添加六种浓度(0.1 - 7.0 mg/mL)的乳糖、葡萄糖和半乳糖,总共432个样本被提交给卷积神经网络。使用准确率、精密度、灵敏度、特异性、均方根误差、均方误差、平均绝对误差和决定系数(R)作为评估参数。算法显示分类的预测能力(准确率)高于95%,乳糖、葡萄糖和半乳糖定量的R分别为81%、86%和92%。我们的结果表明,FTIR光谱与人工智能工具(如CNN)相结合,是一种用于定量牛奶中乳糖和其他糖类的高效、快速且低成本的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5db/9851855/6f37febbe087/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验