文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的肾细胞癌肝转移风险预测的临床预测模型。

A clinical prediction model for predicting the risk of liver metastasis from renal cell carcinoma based on machine learning.

机构信息

Department of Urology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.

Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China.

出版信息

Front Endocrinol (Lausanne). 2023 Jan 5;13:1083569. doi: 10.3389/fendo.2022.1083569. eCollection 2022.


DOI:10.3389/fendo.2022.1083569
PMID:36686417
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9850289/
Abstract

BACKGROUND: Renal cell carcinoma (RCC) is a highly metastatic urological cancer. RCC with liver metastasis (LM) carries a dismal prognosis. The objective of this study is to develop a machine learning (ML) model that predicts the risk of RCC with LM, which is used to assist clinical treatment. METHODS: The retrospective study data of 42,547 patients with RCC were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. ML includes algorithmic methods and is a fast-rising field that has been widely used in the biomedical field. Logistic regression (LR), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGB), random forest (RF), decision tree (DT), and naive Bayesian model [Naive Bayes Classifier (NBC)] were applied to develop prediction models to predict the risk of RCC with LM. The six models were 10-fold cross-validated, and the best-performing model was selected based on the area under the curve (AUC) value. A web online calculator was constructed based on the best ML model. RESULTS: Bone metastasis, lung metastasis, grade, T stage, N stage, and tumor size were independent risk factors for the development of RCC with LM by multivariate regression analysis. In addition, the correlation of the relative proportions of the six clinical variables was shown by a heat map. In the prediction models of RCC with LM, the mean AUC of the XGB model among the six ML algorithms was 0.947. Based on the XGB model, the web calculator (https://share.streamlit.io/liuwencai4/renal_liver/main/renal_liver.py) was developed to evaluate the risk of RCC with LM. CONCLUSIONS: This XGB model has the best predictive effect on RCC with LM. The web calculator constructed based on the XGB model has great potential for clinicians to make clinical decisions and improve the prognosis of RCC patients with LM.

摘要

背景:肾细胞癌(RCC)是一种高度转移性的泌尿系统癌症。伴肝转移(LM)的 RCC 预后不良。本研究旨在开发一种机器学习(ML)模型,以预测伴 LM 的 RCC 风险,从而辅助临床治疗。

方法:从监测、流行病学和最终结果(SEER)数据库中提取了 42547 例 RCC 患者的回顾性研究数据。ML 包括算法方法,是一个快速发展的领域,已广泛应用于生物医学领域。逻辑回归(LR)、梯度提升机(GBM)、极端梯度提升(XGB)、随机森林(RF)、决策树(DT)和朴素贝叶斯模型[朴素贝叶斯分类器(NBC)]被应用于开发预测模型,以预测伴 LM 的 RCC 风险。这六种模型进行了 10 折交叉验证,并根据曲线下面积(AUC)值选择表现最佳的模型。基于最佳 ML 模型构建了一个在线计算器。

结果:多变量回归分析显示,骨转移、肺转移、分级、T 分期、N 分期和肿瘤大小是伴 LM 的 RCC 发展的独立危险因素。此外,通过热图显示了六种临床变量的相对比例的相关性。在伴 LM 的 RCC 预测模型中,六种 ML 算法中 XGB 模型的平均 AUC 为 0.947。基于 XGB 模型,开发了在线计算器(https://share.streamlit.io/liuwencai4/renal_liver/main/renal_liver.py),以评估伴 LM 的 RCC 风险。

结论:该 XGB 模型对伴 LM 的 RCC 具有最佳预测效果。基于 XGB 模型构建的在线计算器具有很大的潜力,可帮助临床医生做出临床决策,改善伴 LM 的 RCC 患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9850289/9c88b06ce0a6/fendo-13-1083569-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9850289/db244f395c20/fendo-13-1083569-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9850289/1d7da0911ba0/fendo-13-1083569-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9850289/3d765b7f31fb/fendo-13-1083569-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9850289/01bcb365f5ca/fendo-13-1083569-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9850289/f2b36da4ac83/fendo-13-1083569-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9850289/9c88b06ce0a6/fendo-13-1083569-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9850289/db244f395c20/fendo-13-1083569-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9850289/1d7da0911ba0/fendo-13-1083569-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9850289/3d765b7f31fb/fendo-13-1083569-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9850289/01bcb365f5ca/fendo-13-1083569-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9850289/f2b36da4ac83/fendo-13-1083569-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9850289/9c88b06ce0a6/fendo-13-1083569-g006.jpg

相似文献

[1]
A clinical prediction model for predicting the risk of liver metastasis from renal cell carcinoma based on machine learning.

Front Endocrinol (Lausanne). 2022

[2]
Development and validation of a machine learning model to predict the risk of lymph node metastasis in renal carcinoma.

Front Endocrinol (Lausanne). 2022

[3]
Establishment and Validation of a Machine Learning Prediction Model Based on Big Data for Predicting the Risk of Bone Metastasis in Renal Cell Carcinoma Patients.

Comput Math Methods Med. 2022

[4]
An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning.

Comput Intell Neurosci. 2022

[5]
A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing's Sarcoma.

Front Med (Lausanne). 2022-4-6

[6]
Development of a Machine Learning-Based Predictive Model for Lung Metastasis in Patients With Ewing Sarcoma.

Front Med (Lausanne). 2022-4-1

[7]
A machine learning-based model for clinical prediction of distal metastasis in chondrosarcoma: a multicenter, retrospective study.

PeerJ. 2023

[8]
Interpretable machine learning-based clinical prediction model for predicting lymph node metastasis in patients with intrahepatic cholangiocarcinoma.

BMC Gastroenterol. 2024-4-19

[9]
Using machine learning to predict lymph node metastasis in patients with renal cell carcinoma: A population-based study.

Front Public Health. 2023

[10]
Applying machine learning techniques to predict the risk of lung metastases from rectal cancer: a real-world retrospective study.

Front Oncol. 2023-5-24

引用本文的文献

[1]
Knowledge map of artificial intelligence in neurodegenerative diseases: a decade-long bibliometric and visualization study.

Front Aging Neurosci. 2025-5-14

[2]
XGBoost model for predicting erectile dysfunction risk after radical prostatectomy: development and validation using machine learning.

Discov Oncol. 2025-5-19

[3]
Survival outcomes and risk factors for liver and pancreatic metastases in renal cell carcinoma after curative nephrectomy.

BMC Urol. 2025-5-15

[4]
Navigating advanced renal cell carcinoma in the era of artificial intelligence.

Cancer Imaging. 2025-2-18

[5]
Development and validation of a prediction model for coronary heart disease risk in depressed patients aged 20 years and older using machine learning algorithms.

Front Cardiovasc Med. 2025-1-9

[6]
Identification of biomarkers for knee osteoarthritis through clinical data and machine learning models.

Sci Rep. 2025-1-11

[7]
Development and validation of a prediction model for the prognosis of renal cell carcinoma with liver metastases: a population-based cohort study.

Front Med (Lausanne). 2024-12-3

[8]
Association analysis of gut microbiota with LDL-C metabolism and microbial pathogenicity in colorectal cancer patients.

Lipids Health Dis. 2024-11-8

[9]
Comprehensive assessment of the association between tumor-infiltrating immune cells and the prognosis of renal cell carcinoma.

World J Clin Oncol. 2024-10-24

[10]
Machine learning predictive models and risk factors for lymph node metastasis in non-small cell lung cancer.

BMC Pulm Med. 2024-10-22

本文引用的文献

[1]
Machine Learning Applications for the Prediction of Bone Cement Leakage in Percutaneous Vertebroplasty.

Front Public Health. 2021

[2]
New frontiers against sorafenib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers.

Pharmacol Res. 2021-8

[3]
Raman optical identification of renal cell carcinoma via machine learning.

Spectrochim Acta A Mol Biomol Spectrosc. 2021-5-5

[4]
Radiomics-based machine learning model to predict risk of death within 5-years in clear cell renal cell carcinoma patients.

Comput Biol Med. 2021-2

[5]
Gut microbiome, big data and machine learning to promote precision medicine for cancer.

Nat Rev Gastroenterol Hepatol. 2020-7-9

[6]
Synchronous Metastasis Rates in T1 Renal Cell Carcinoma: A Surveillance, Epidemiology, and End Results Database-based Study.

Eur Urol Focus. 2021-7

[7]
Renal cell carcinoma trends in Latvia: incidence, mortality, and survival rates. Population-based study.

Cent European J Urol. 2019

[8]
Machine learning with autophagy-related proteins for discriminating renal cell carcinoma subtypes.

Sci Rep. 2020-1-20

[9]
First-line Treatment of Metastatic Renal Cell Carcinoma: A Systematic Review and Network Meta-analysis.

Eur Urol Oncol. 2019-10-4

[10]
Clear-cell Renal Cell Carcinoma: Molecular Characterization of IMDC Risk Groups and Sarcomatoid Tumors.

Clin Genitourin Cancer. 2019-5-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索