文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

结直肠癌患者 LDL-C 代谢与微生物致病性的肠道微生物关联分析。

Association analysis of gut microbiota with LDL-C metabolism and microbial pathogenicity in colorectal cancer patients.

机构信息

Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.

出版信息

Lipids Health Dis. 2024 Nov 8;23(1):367. doi: 10.1186/s12944-024-02333-4.


DOI:10.1186/s12944-024-02333-4
PMID:39516755
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11546423/
Abstract

BACKGROUND: Colorectal cancer (CRC) is the most common gastrointestinal malignancy worldwide, with obesity-induced lipid metabolism disorders playing a crucial role in its progression. A complex connection exists between gut microbiota and the development of intestinal tumors through the microbiota metabolite pathway. Metabolic disorders frequently alter the gut microbiome, impairing immune and cellular functions and hastening cancer progression. METHODS: This study thoroughly examined the gut microbiota through 16S rRNA sequencing of fecal samples from 181 CRC patients, integrating preoperative Low-density lipoprotein cholesterol (LDL-C) levels and RNA sequencing data. The study includes a comparison of microbial diversity, differential microbiological analysis, exploration of the associations between microbiota, tumor microenvironment immune cells, and immune genes, enrichment analysis of potential biological functions of microbe-related host genes, and the prediction of LDL-C status through microorganisms. RESULTS: The analysis revealed that differences in α and β diversity indices of intestinal microbiota in CRC patients were not statistically significant across different LDL-C metabolic states. Patients exhibited varying LDL-C metabolic conditions, leading to a bifurcation of their gut microbiota into two distinct clusters. Patients with LDL-C metabolic irregularities had higher concentrations of twelve gut microbiota, which were linked to various immune cells and immune-related genes, influencing tumor immunity. Under normal LDL-C metabolic conditions, the protective microorganism Anaerostipes_caccae was significantly negatively correlated with the GO Biological Process pathway involved in the negative regulation of the unfolded protein response in the endoplasmic reticulum. Both XGBoost and MLP models, developed using differential gut microbiota, could forecast LDL-C levels in CRC patients biologically. CONCLUSIONS: The intestinal microbiota in CRC patients influences the LDL-C metabolic status. With elevated LDL-C levels, gut microbiota can regulate the function of immune cells and gene expression within the tumor microenvironment, affecting cancer-related pathways and promoting CRC progression. LDL-C and its associated gut microbiota could provide non-invasive markers for clinical evaluation and treatment of CRC patients.

摘要

背景:结直肠癌(CRC)是全球最常见的胃肠道恶性肿瘤,肥胖引起的脂质代谢紊乱在其进展中起着至关重要的作用。肠道微生物群通过微生物代谢物途径与肠道肿瘤的发生发展之间存在着复杂的联系。代谢紊乱常导致肠道微生物群发生改变,损害免疫和细胞功能,加速癌症进展。

方法:本研究通过对 181 例 CRC 患者粪便样本的 16S rRNA 测序,整合术前低密度脂蛋白胆固醇(LDL-C)水平和 RNA 测序数据,全面研究了肠道微生物群。该研究包括微生物多样性比较、差异微生物分析、菌群与肿瘤微环境免疫细胞和免疫基因的相关性探讨、微生物相关宿主基因潜在生物学功能的富集分析以及通过微生物预测 LDL-C 状态。

结果:分析结果表明,CRC 患者肠道微生物群的α和β多样性指数在不同 LDL-C 代谢状态下无统计学差异。患者表现出不同的 LDL-C 代谢状态,导致其肠道微生物群分为两个截然不同的簇。LDL-C 代谢异常的患者有 12 种肠道微生物群浓度较高,这些微生物与多种免疫细胞和免疫相关基因相关,影响肿瘤免疫。在正常 LDL-C 代谢条件下,保护性微生物菌属 Anaerostipes_caccae 与内质网未折叠蛋白反应的负调控相关的 GO 生物过程通路呈显著负相关。使用差异肠道微生物群构建的 XGBoost 和 MLP 模型可以从生物学角度预测 CRC 患者的 LDL-C 水平。

结论:CRC 患者的肠道微生物群影响 LDL-C 的代谢状态。随着 LDL-C 水平的升高,肠道微生物群可以调节肿瘤微环境中免疫细胞的功能和基因表达,影响与癌症相关的通路,促进 CRC 的进展。LDL-C 及其相关肠道微生物群可为 CRC 患者的临床评估和治疗提供非侵入性标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11546423/249c3f4c6562/12944_2024_2333_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11546423/86044705f568/12944_2024_2333_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11546423/18b7fe6e1cd3/12944_2024_2333_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11546423/2c2bed5bcf67/12944_2024_2333_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11546423/e8f4e4a7d263/12944_2024_2333_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11546423/bc7eb36ae1e8/12944_2024_2333_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11546423/249c3f4c6562/12944_2024_2333_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11546423/86044705f568/12944_2024_2333_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11546423/18b7fe6e1cd3/12944_2024_2333_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11546423/2c2bed5bcf67/12944_2024_2333_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11546423/e8f4e4a7d263/12944_2024_2333_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11546423/bc7eb36ae1e8/12944_2024_2333_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11546423/249c3f4c6562/12944_2024_2333_Fig6_HTML.jpg

相似文献

[1]
Association analysis of gut microbiota with LDL-C metabolism and microbial pathogenicity in colorectal cancer patients.

Lipids Health Dis. 2024-11-8

[2]
Identification of KRAS mutation-associated gut microbiota in colorectal cancer and construction of predictive machine learning model.

Microbiol Spectr. 2024-5-2

[3]
Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer.

Theranostics. 2021-2-19

[4]
Colorectal cancer microbiome programs DNA methylation of host cells by affecting methyl donor metabolism.

Genome Med. 2024-6-5

[5]
Identification of colorectal cancer progression-associated intestinal microbiome and predictive signature construction.

J Transl Med. 2023-6-8

[6]
Gut microbial and metabolomics profiles reveal the potential mechanism of fecal microbiota transplantation in modulating the progression of colitis-associated colorectal cancer in mice.

J Transl Med. 2024-11-15

[7]
Integrated microbiome and metabolome analysis reveals a novel interplay between commensal bacteria and metabolites in colorectal cancer.

Theranostics. 2019-5-31

[8]
Changes in gut microbiota and plasma inflammatory factors across the stages of colorectal tumorigenesis: a case-control study.

BMC Microbiol. 2018-8-29

[9]
Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-yang deficiency syndrome and the intervention effect of You-gui pill.

J Ethnopharmacol. 2019-8-8

[10]
Integrated analysis of gut microbiota and metabolomic profiling in colorectal cancer metastasis.

Environ Toxicol. 2024-10

引用本文的文献

[1]
Dysregulated Cholesterol Metabolism and Its Impact on the Tumour Immune Response in Colorectal Cancer.

J Cell Mol Med. 2025-8

[2]
Inhibition of Bovine Enterovirus Infection by Magnolol via Modulating the Gut Microbiota in Mice.

Viruses. 2025-5-24

[3]
Global Research Trends and Hotspots in the Role of Cholesterol in Colorectal Cancer: A Bibliometric Analysis.

Hum Mutat. 2025-5-24

[4]
Lipid Metabolism in Gastrointestinal Malignancies: Exploring Dysregulation, Biomarkers, and Treatment Strategies.

Cancer Med. 2025-5

[5]
Crosstalk between gut microbiotas and fatty acid metabolism in colorectal cancer.

Cell Death Discov. 2025-2-26

本文引用的文献

[1]
Intestinal IL-22RA1 signaling regulates intrinsic and systemic lipid and glucose metabolism to alleviate obesity-associated disorders.

Nat Commun. 2024-2-21

[2]
Cholesterol reprograms glucose and lipid metabolism to promote proliferation in colon cancer cells.

Cancer Metab. 2023-9-13

[3]
LC-MS-based serum metabolomics analysis for the screening and monitoring of colorectal cancer.

Front Oncol. 2023-6-28

[4]
Genetic variants of MUC4 are associated with susceptibility to and mortality of colorectal cancer and exhibit synergistic effects with LDL-C levels.

PLoS One. 2023

[5]
Altered gut microbiota of obesity subjects promotes colorectal carcinogenesis in mice.

EBioMedicine. 2023-7

[6]
Pan-cancer analysis identifies PD-L2 as a tumor promotor in the tumor microenvironment.

Front Immunol. 2023

[7]
Development and validation of machine learning models for postoperative venous thromboembolism prediction in colorectal cancer inpatients: a retrospective study.

J Gastrointest Oncol. 2023-2-28

[8]
Site Specialization of Human Oral Species.

Microbiol Spectr. 2023-2-14

[9]
A clinical prediction model for predicting the risk of liver metastasis from renal cell carcinoma based on machine learning.

Front Endocrinol (Lausanne). 2022

[10]
The Clinical Value of Blood miR-654-5p, miR-126, miR-10b, and miR-144 in the Diagnosis of Colorectal Cancer.

Comput Math Methods Med. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索