用于预测前列腺癌根治术后勃起功能障碍风险的XGBoost模型:基于机器学习的开发与验证

XGBoost model for predicting erectile dysfunction risk after radical prostatectomy: development and validation using machine learning.

作者信息

Jiang Hesong, Ji Lu, Zhu Leilei, Wang Hengbing, Mao Fei

机构信息

Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian City, 223300, Jiangsu Province, China.

Department of Urology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, #299 Qingyang Road, Wuxi, 214023, Jiangsu Province, China.

出版信息

Discov Oncol. 2025 May 19;16(1):810. doi: 10.1007/s12672-025-02685-y.

Abstract

BACKGROUND

Erectile dysfunction (ED) is a frequent complication following radical prostatectomy, significantly affecting patients' quality of life. Traditional predictive methods often struggle to capture complex nonlinear risk factors. This study aims to develop a machine learning-based model to improve ED risk stratification and guide personalized management.

METHODS

A total of 1,147 prostate cancer patients were analyzed, among whom 285 (24.85%) developed postoperative ED. Univariate and multivariate analyses identified age, smoking history, Gleason score, prostate volume, T-stage, surgical approach, operative time, intraoperative bleeding, and PCT levels as independent risk factors (P < 0.05). Machine learning models, including XGBoost, Random Forest, Support Vector Machine, and k-Nearest Neighbors, were trained for ED risk prediction. Key predictors included advanced age, smoking history, Gleason score ≥ 8, prostate volume ≥ 40 ml, T-stage, laparoscopic-assisted surgery, and prolonged operative duration.

RESULTS

XGBoost exhibited the highest predictive accuracy (AUC: 0.980 in training; 0.960 in validation), outperforming other models. Calibration curves confirmed strong concordance between predicted and actual probabilities, while decision curve analysis demonstrated superior clinical utility, with XGBoost providing the greatest net benefit. Ten-fold cross-validation indicated stable performance (validation AUC: 0.9127 ± 0.0770; test AUC: 0.9592; accuracy: 0.9111), and external validation confirmed model generalizability (AUC: 0.84). SHAP analysis highlighted key risk contributors, enabling individualized risk assessment and targeted clinical interventions.

CONCLUSION

The XGBoost model exhibited superior predictive performance and clinical applicability in assessing ED risk after radical prostatectomy, offering a robust tool for personalized postoperative management.

摘要

背景

勃起功能障碍(ED)是根治性前列腺切除术后常见的并发症,严重影响患者的生活质量。传统的预测方法往往难以捕捉复杂的非线性风险因素。本研究旨在开发一种基于机器学习的模型,以改善ED风险分层并指导个性化管理。

方法

共分析了1147例前列腺癌患者,其中285例(24.85%)术后发生ED。单因素和多因素分析确定年龄、吸烟史、Gleason评分、前列腺体积、T分期、手术方式、手术时间、术中出血和PCT水平为独立危险因素(P<0.05)。对包括XGBoost、随机森林、支持向量机和k近邻在内的机器学习模型进行训练,以预测ED风险。关键预测因素包括高龄、吸烟史、Gleason评分≥8、前列腺体积≥40ml、T分期、腹腔镜辅助手术和手术时间延长。

结果

XGBoost表现出最高的预测准确性(训练集AUC:0.980;验证集AUC:0.960),优于其他模型。校准曲线证实预测概率与实际概率之间具有很强的一致性,而决策曲线分析表明其临床实用性更佳,XGBoost提供的净效益最大。十折交叉验证表明性能稳定(验证集AUC:0.9127±0.0770;测试集AUC:0.9592;准确率:0.9111),外部验证证实了模型的可推广性(AUC:0.84)。SHAP分析突出了关键风险因素,有助于进行个性化风险评估和针对性的临床干预。

结论

XGBoost模型在评估根治性前列腺切除术后ED风险方面表现出卓越的预测性能和临床适用性,为个性化术后管理提供了有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65c6/12089576/d4460a36cb44/12672_2025_2685_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索