文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MiXcan:一种具有细胞类型感知能力的全转录组关联研究框架及其在乳腺癌中的应用。

MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer.

机构信息

Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Nat Commun. 2023 Jan 23;14(1):377. doi: 10.1038/s41467-023-35888-4.


DOI:10.1038/s41467-023-35888-4
PMID:36690614
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9871010/
Abstract

Human bulk tissue samples comprise multiple cell types with diverse roles in disease etiology. Conventional transcriptome-wide association study approaches predict genetically regulated gene expression at the tissue level, without considering cell-type heterogeneity, and test associations of predicted tissue-level expression with disease. Here we develop MiXcan, a cell-type-aware transcriptome-wide association study approach that predicts cell-type-level expression, identifies disease-associated genes via combination of cell-type-level association signals for multiple cell types, and provides insight into the disease-critical cell type. As a proof of concept, we conducted cell-type-aware analyses of breast cancer in 58,648 women and identified 12 transcriptome-wide significant genes using MiXcan compared with only eight genes using conventional approaches. Importantly, MiXcan identified genes with distinct associations in mammary epithelial versus stromal cells, including three new breast cancer susceptibility genes. These findings demonstrate that cell-type-aware transcriptome-wide analyses can reveal new insights into the genetic and cellular etiology of breast cancer and other diseases.

摘要

人体组织样本包含多种具有不同疾病病因作用的细胞类型。传统的转录组全基因组关联研究方法预测组织水平上受遗传调控的基因表达,而不考虑细胞类型异质性,并检测预测的组织水平表达与疾病的关联。在这里,我们开发了 MiXcan,这是一种细胞类型感知的转录组全基因组关联研究方法,可预测细胞类型水平的表达,通过对多种细胞类型的细胞类型水平关联信号进行组合来识别与疾病相关的基因,并深入了解疾病关键细胞类型。作为概念验证,我们对 58648 名女性的乳腺癌进行了细胞类型感知分析,使用 MiXcan 鉴定了 12 个转录组全基因组显著基因,而使用传统方法仅鉴定了 8 个基因。重要的是,MiXcan 鉴定了在乳腺上皮细胞与基质细胞中具有不同关联的基因,包括三个新的乳腺癌易感基因。这些发现表明,细胞类型感知的转录组全基因组分析可以深入了解乳腺癌和其他疾病的遗传和细胞病因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f04/9871010/c98700b485fb/41467_2023_35888_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f04/9871010/e947050d8a3a/41467_2023_35888_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f04/9871010/5a111b675fbf/41467_2023_35888_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f04/9871010/7e4ddc15ea0c/41467_2023_35888_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f04/9871010/95affece976c/41467_2023_35888_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f04/9871010/95e9454a769c/41467_2023_35888_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f04/9871010/c98700b485fb/41467_2023_35888_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f04/9871010/e947050d8a3a/41467_2023_35888_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f04/9871010/5a111b675fbf/41467_2023_35888_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f04/9871010/7e4ddc15ea0c/41467_2023_35888_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f04/9871010/95affece976c/41467_2023_35888_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f04/9871010/95e9454a769c/41467_2023_35888_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f04/9871010/c98700b485fb/41467_2023_35888_Fig6_HTML.jpg

相似文献

[1]
MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer.

Nat Commun. 2023-1-23

[2]
A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer.

Nat Genet. 2018-6-18

[3]
A joint transcriptome-wide association study across multiple tissues identifies candidate breast cancer susceptibility genes.

Am J Hum Genet. 2023-6-1

[4]
Genome- and transcriptome-wide association studies of 386,000 Asian and European-ancestry women provide new insights into breast cancer genetics.

Am J Hum Genet. 2022-12-1

[5]
Multi-tissue transcriptome-wide association studies identified 235 genes for intrinsic subtypes of breast cancer.

J Natl Cancer Inst. 2024-7-1

[6]
Genome-wide and transcriptome-wide association studies of mammographic density phenotypes reveal novel loci.

Breast Cancer Res. 2022-4-12

[7]
Using genome and transcriptome data from African-ancestry female participants to identify putative breast cancer susceptibility genes.

Nat Commun. 2024-5-2

[8]
Integration of microRNA signatures of distinct mammary epithelial cell types with their gene expression and epigenetic portraits.

Breast Cancer Res. 2015-6-18

[9]
Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia.

Am J Hum Genet. 2024-6-6

[10]
A transcriptome-wide association study identifies novel candidate susceptibility genes for prostate cancer risk.

Int J Cancer. 2022-1-1

引用本文的文献

[1]
An atlas of single-cell eQTLs dissects autoimmune disease genes and identifies novel drug classes for treatment.

Cell Genom. 2025-4-9

[2]
webTWAS 2.0: update platform for identifying complex disease susceptibility genes through transcriptome-wide association study.

Nucleic Acids Res. 2025-1-6

[3]
Multiome-wide Association Studies: Novel Approaches for Understanding Diseases.

Genomics Proteomics Bioinformatics. 2024-12-3

[4]
scTWAS Atlas: an integrative knowledgebase of single-cell transcriptome-wide association studies.

Nucleic Acids Res. 2025-1-6

[5]
Transcriptomic Approaches to Cardiomyocyte-Biomaterial Interactions: A Review.

ACS Biomater Sci Eng. 2024-7-8

[6]
A multi-tissue, splicing-based joint transcriptome-wide association study identifies susceptibility genes for breast cancer.

Am J Hum Genet. 2024-6-6

[7]
Multi-tissue transcriptome-wide association studies identified 235 genes for intrinsic subtypes of breast cancer.

J Natl Cancer Inst. 2024-7-1

[8]
mRNA-Targeting Antisense Oligonucleotide Blocks Cell Proliferation and Induces Apoptosis in Breast Cancer Cell Lines.

Pharmaceutics. 2023-7-11

[9]
eQTL studies: from bulk tissues to single cells.

J Genet Genomics. 2023-12

[10]
A joint transcriptome-wide association study across multiple tissues identifies candidate breast cancer susceptibility genes.

Am J Hum Genet. 2023-6-1

本文引用的文献

[1]
A statistical framework to identify cell types whose genetically regulated proportions are associated with complex diseases.

PLoS Genet. 2023-7

[2]
Multi-context genetic modeling of transcriptional regulation resolves novel disease loci.

Nat Commun. 2022-9-28

[3]
Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function.

Science. 2022-5-13

[4]
Comprehensive evaluation of deconvolution methods for human brain gene expression.

Nat Commun. 2022-3-15

[5]
Tissue specificity-aware TWAS (TSA-TWAS) framework identifies novel associations with metabolic, immunologic, and virologic traits in HIV-positive adults.

PLoS Genet. 2021-4

[6]
Bayesian estimation of cell type-specific gene expression with prior derived from single-cell data.

Genome Res. 2021-10

[7]
Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies.

PLoS Genet. 2021-4

[8]
Benchmarking of cell type deconvolution pipelines for transcriptomics data.

Nat Commun. 2020-11-6

[9]
Identification of 31 loci for mammographic density phenotypes and their associations with breast cancer risk.

Nat Commun. 2020-10-9

[10]
Cauchy combination test: a powerful test with analytic -value calculation under arbitrary dependency structures.

J Am Stat Assoc. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索