Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Computer Science and Artificial Intelligence Lab, ENGIE Lab Crigen, Stains, France.
Nat Methods. 2023 Feb;20(2):284-294. doi: 10.1038/s41592-022-01746-2. Epub 2023 Jan 23.
Cryo-electron tomograms capture a wealth of structural information on the molecular constituents of cells and tissues. We present DeePiCt (deep picker in context), an open-source deep-learning framework for supervised segmentation and macromolecular complex localization in cryo-electron tomography. To train and benchmark DeePiCt on experimental data, we comprehensively annotated 20 tomograms of Schizosaccharomyces pombe for ribosomes, fatty acid synthases, membranes, nuclear pore complexes, organelles, and cytosol. By comparing DeePiCt to state-of-the-art approaches on this dataset, we show its unique ability to identify low-abundance and low-density complexes. We use DeePiCt to study compositionally distinct subpopulations of cellular ribosomes, with emphasis on their contextual association with mitochondria and the endoplasmic reticulum. Finally, applying pre-trained networks to a HeLa cell tomogram demonstrates that DeePiCt achieves high-quality predictions in unseen datasets from different biological species in a matter of minutes. The comprehensively annotated experimental data and pre-trained networks are provided for immediate use by the community.
低温电子断层扫描图捕获了大量关于细胞和组织中分子成分的结构信息。我们提出了 DeePiCt(上下文深度选择器),这是一个用于低温电子断层扫描中监督分割和大分子复合物定位的开源深度学习框架。为了在实验数据上训练和基准测试 DeePiCt,我们全面注释了 20 个酿酒酵母的断层扫描图像,用于核糖体、脂肪酸合成酶、膜、核孔复合物、细胞器和细胞质。通过将 DeePiCt 与该数据集上的最先进方法进行比较,我们展示了它识别低丰度和低密度复合物的独特能力。我们使用 DeePiCt 来研究细胞核糖体的组成不同的亚群,重点是它们与线粒体和内质网的上下文关联。最后,将预先训练的网络应用于 HeLa 细胞断层扫描图表明,DeePiCt 可以在几分钟内对来自不同生物物种的未见数据集进行高质量预测。全面注释的实验数据和预先训练的网络可供社区立即使用。