Suppr超能文献

基于卷积自动编码器的方法,用于挖掘细胞电子冷冻断层图像特征和弱监督的粗分割。

A convolutional autoencoder approach for mining features in cellular electron cryo-tomograms and weakly supervised coarse segmentation.

机构信息

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh 15213, USA.

Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Cryo-electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.

出版信息

J Struct Biol. 2018 May;202(2):150-160. doi: 10.1016/j.jsb.2017.12.015. Epub 2017 Dec 28.

Abstract

Cellular electron cryo-tomography enables the 3D visualization of cellular organization in the near-native state and at submolecular resolution. However, the contents of cellular tomograms are often complex, making it difficult to automatically isolate different in situ cellular components. In this paper, we propose a convolutional autoencoder-based unsupervised approach to provide a coarse grouping of 3D small subvolumes extracted from tomograms. We demonstrate that the autoencoder can be used for efficient and coarse characterization of features of macromolecular complexes and surfaces, such as membranes. In addition, the autoencoder can be used to detect non-cellular features related to sample preparation and data collection, such as carbon edges from the grid and tomogram boundaries. The autoencoder is also able to detect patterns that may indicate spatial interactions between cellular components. Furthermore, we demonstrate that our autoencoder can be used for weakly supervised semantic segmentation of cellular components, requiring a very small amount of manual annotation.

摘要

细胞电子断层扫描技术能够以近天然状态和亚分子分辨率对细胞组织进行 3D 可视化。然而,细胞断层图像的内容通常较为复杂,因此很难自动分离不同的原位细胞成分。在本文中,我们提出了一种基于卷积自动编码器的无监督方法,用于对从断层图像中提取的 3D 小体积进行粗略分组。我们证明了自动编码器可用于高效且粗略地描述大分子复合物和表面(如膜)的特征。此外,自动编码器还可用于检测与样品制备和数据采集相关的非细胞特征,例如网格的碳边缘和断层图像的边界。自动编码器还能够检测可能表明细胞成分之间空间相互作用的模式。此外,我们证明了我们的自动编码器可用于细胞成分的弱监督语义分割,仅需要少量的手动注释。

相似文献

引用本文的文献

2
DEEP LEARNING BASED SUPERVISED SEMANTIC SEGMENTATION OF ELECTRON CRYO-SUBTOMOGRAMS.基于深度学习的电子冷冻亚断层图监督语义分割
Proc Int Conf Image Proc. 2018 Oct;2018:1578-1582. doi: 10.1109/icip.2018.8451386. Epub 2018 Sep 6.
10
Better, Faster, Cheaper: Recent Advances in Cryo-Electron Microscopy.更好、更快、更便宜:冷冻电镜的最新进展。
Annu Rev Biochem. 2022 Jun 21;91:1-32. doi: 10.1146/annurev-biochem-032620-110705. Epub 2022 Mar 23.

本文引用的文献

5
Deciphering the molecular architecture of membrane contact sites by cryo-electron tomography.通过冷冻电镜断层扫描解析膜接触位点的分子结构。
Biochim Biophys Acta Mol Cell Res. 2017 Sep;1864(9):1507-1512. doi: 10.1016/j.bbamcr.2017.03.009. Epub 2017 Mar 19.
6
SuRVoS: Super-Region Volume Segmentation workbench.SuRVoS:超区域体积分割工作台。
J Struct Biol. 2017 Apr;198(1):43-53. doi: 10.1016/j.jsb.2017.02.007. Epub 2017 Feb 27.
7
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.SegNet:一种用于图像分割的深度卷积编解码器架构。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
10
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验