Suppr超能文献

基于深度学习的超广角眼底图像中多种周边视网膜病变的智能诊断

Intelligent Diagnosis of Multiple Peripheral Retinal Lesions in Ultra-widefield Fundus Images Based on Deep Learning.

作者信息

Wang Tong, Liao Guoliang, Chen Lin, Zhuang Yan, Zhou Sibo, Yuan Qiongzhen, Han Lin, Wu Shanshan, Chen Ke, Wang Binjian, Mi Junyu, Gao Yunxia, Lin Jiangli, Zhang Ming

机构信息

Department of Ophthalmology, West China Hospital, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China.

West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.

出版信息

Ophthalmol Ther. 2023 Apr;12(2):1081-1095. doi: 10.1007/s40123-023-00651-x. Epub 2023 Jan 24.

Abstract

INTRODUCTION

Compared with traditional fundus examination techniques, ultra-widefield fundus (UWF) images provide 200° panoramic images of the retina, which allows better detection of peripheral retinal lesions. The advent of UWF provides effective solutions only for detection but still lacks efficient diagnostic capabilities. This study proposed a retinal lesion detection model to automatically locate and identify six relatively typical and high-incidence peripheral retinal lesions from UWF images which will enable early screening and rapid diagnosis.

METHODS

A total of 24,602 augmented ultra-widefield fundus images with labels corresponding to 6 peripheral retinal lesions and normal manifestation labelled by 5 ophthalmologists were included in this study. An object detection model named You Only Look Once X (YOLOX) was modified and trained to locate and classify the six peripheral retinal lesions including rhegmatogenous retinal detachment (RRD), retinal breaks (RB), white without pressure (WWOP), cystic retinal tuft (CRT), lattice degeneration (LD), and paving-stone degeneration (PSD). We applied coordinate attention block and generalized intersection over union (GIOU) loss to YOLOX and evaluated it for accuracy, sensitivity, specificity, precision, F1 score, and average precision (AP). This model was able to show the exact location and saliency map of the retinal lesions detected by the model thus contributing to efficient screening and diagnosis.

RESULTS

The model reached an average accuracy of 96.64%, sensitivity of 87.97%, specificity of 98.04%, precision of 87.01%, F1 score of 87.39%, and mAP of 86.03% on test dataset 1 including 248 UWF images and reached an average accuracy of 95.04%, sensitivity of 83.90%, specificity of 96.70%, precision of 78.73%, F1 score of 81.96%, and mAP of 80.59% on external test dataset 2 including 586 UWF images, showing this system performs well in distinguishing the six peripheral retinal lesions.

CONCLUSION

Focusing on peripheral retinal lesions, this work proposed a deep learning model, which automatically recognized multiple peripheral retinal lesions from UWF images and localized exact positions of lesions. Therefore, it has certain potential for early screening and intelligent diagnosis of peripheral retinal lesions.

摘要

引言

与传统眼底检查技术相比,超广角眼底(UWF)图像可提供200°的视网膜全景图像,有助于更好地检测周边视网膜病变。UWF的出现仅为检测提供了有效解决方案,但仍缺乏高效的诊断能力。本研究提出了一种视网膜病变检测模型,用于从UWF图像中自动定位和识别六种相对典型且高发的周边视网膜病变,从而实现早期筛查和快速诊断。

方法

本研究纳入了24,602张增强的超广角眼底图像,这些图像带有由5位眼科医生标注的6种周边视网膜病变及正常表现的标签。对一个名为You Only Look Once X(YOLOX)的目标检测模型进行修改和训练,以定位和分类六种周边视网膜病变,包括孔源性视网膜脱离(RRD)、视网膜裂孔(RB)、无压力性白色病变(WWOP)、囊性视网膜簇(CRT)、格子样变性(LD)和铺路石样变性(PSD)。我们将坐标注意力模块和广义交并比(GIOU)损失应用于YOLOX,并对其准确性、敏感性、特异性、精确率、F1分数和平均精度(AP)进行评估。该模型能够显示模型检测到的视网膜病变的确切位置和显著性图,从而有助于高效筛查和诊断。

结果

该模型在包含248张UWF图像的测试数据集1上的平均准确率达到96.64%,敏感性为87.97%,特异性为98.04%,精确率为87.01%,F1分数为87.39%,平均精度为(mAP)86.03%;在包含586张UWF图像的外部测试数据集2上的平均准确率达到95.04%,敏感性为83.90%,特异性为96.70%,精确率为78.73%,F1分数为81.96%,平均精度为80.59%,表明该系统在区分六种周边视网膜病变方面表现良好。

结论

针对周边视网膜病变,本研究提出了一种深度学习模型,该模型可从UWF图像中自动识别多种周边视网膜病变并定位病变的确切位置。因此,它在周边视网膜病变的早期筛查和智能诊断方面具有一定潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验