Suppr超能文献

基于深度学习的眼底照相视网膜裂孔和脱离的自动检测。

Deep Learning-Based Automated Detection of Retinal Breaks and Detachments on Fundus Photography.

机构信息

Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland.

ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.

出版信息

Transl Vis Sci Technol. 2024 Apr 2;13(4):1. doi: 10.1167/tvst.13.4.1.

Abstract

PURPOSE

The purpose of this study was to develop a deep learning algorithm, to detect retinal breaks and retinal detachments on ultra-widefield fundus (UWF) optos images using artificial intelligence (AI).

METHODS

Optomap UWF images of the database were annotated to four groups by two retina specialists: (1) retinal breaks without detachment, (2) retinal breaks with retinal detachment, (3) retinal detachment without visible retinal breaks, and (4) a combination of groups 1 to 3. The fundus image data set was split into a training set and an independent test set following an 80% to 20% ratio. Image preprocessing methods were applied. An EfficientNet classification model was trained with the training set and evaluated with the test set.

RESULTS

A total of 2489 UWF images were included into the dataset, resulting in a training set size of 2008 UWF images and a test set size of 481 images. The classification models achieved an area under the receiver operating characteristic curve (AUC) on the testing set of 0.975 regarding lesion detection, an AUC of 0.972 for retinal detachment and an AUC of 0.913 for retinal breaks.

CONCLUSIONS

A deep learning system to detect retinal breaks and retinal detachment using UWF images is feasible and has a good specificity. This is relevant for clinical routine as there can be a high rate of missed breaks in clinics. Future clinical studies will be necessary to evaluate the cost-effectiveness of applying such an algorithm as an automated auxiliary tool in a large practices or tertiary referral centers.

TRANSLATIONAL RELEVANCE

This study demonstrates the relevance of applying AI in diagnosing peripheral retinal breaks in clinical routine in UWF fundus images.

摘要

目的

本研究旨在开发一种深度学习算法,利用人工智能(AI)在超广角(UWF)眼底图像上检测视网膜裂孔和视网膜脱离。

方法

由两名视网膜专家将数据库中的 Optomap UWF 图像标记为四组:(1)无脱离的视网膜裂孔,(2)有脱离的视网膜裂孔,(3)无可见视网膜裂孔的视网膜脱离,以及(4)组 1 至 3 的组合。根据 80%至 20%的比例,将眼底图像数据集分为训练集和独立测试集。应用图像预处理方法。使用训练集训练 EfficientNet 分类模型,并使用测试集进行评估。

结果

共纳入 2489 张 UWF 图像,数据集大小为 2008 张 UWF 图像的训练集和 481 张图像的测试集。分类模型在测试集上的病变检测的受试者工作特征曲线(ROC)下面积(AUC)为 0.975,视网膜脱离的 AUC 为 0.972,视网膜裂孔的 AUC 为 0.913。

结论

使用 UWF 图像检测视网膜裂孔和视网膜脱离的深度学习系统是可行的,具有很好的特异性。这对于临床常规很重要,因为在诊所中可能会出现很高的裂孔漏诊率。未来的临床研究将有必要评估在大型实践或三级转诊中心中应用此类算法作为自动化辅助工具的成本效益。

翻译

曹语庭

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/522f/10996975/bc22fb5cebc7/tvst-13-4-1-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验