文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用冷响应纳米技术原位冷冻免疫工程肿瘤微环境用于癌症免疫治疗。

In-situ cryo-immune engineering of tumor microenvironment with cold-responsive nanotechnology for cancer immunotherapy.

机构信息

Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.

Department of Medical and Molecular Genetics and Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.

出版信息

Nat Commun. 2023 Jan 24;14(1):392. doi: 10.1038/s41467-023-36045-7.


DOI:10.1038/s41467-023-36045-7
PMID:36693842
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9873931/
Abstract

Cancer immunotherapy that deploys the host's immune system to recognize and attack tumors, is a promising strategy for cancer treatment. However, its efficacy is greatly restricted by the immunosuppressive (i.e., immunologically cold) tumor microenvironment (TME). Here, we report an in-situ cryo-immune engineering (ICIE) strategy for turning the TME from immunologically "cold" into "hot". In particular, after the ICIE treatment, the ratio of the CD8 cytotoxic T cells to the immunosuppressive regulatory T cells is increased by more than 100 times in not only the primary tumors with cryosurgery but also distant tumors without freezing. This is achieved by combining cryosurgery that causes "frostbite" of tumor with cold-responsive nanoparticles that not only target tumor but also rapidly release both anticancer drug and PD-L1 silencing siRNA specifically into the cytosol upon cryosurgery. This ICIE treatment leads to potent immunogenic cell death, which promotes maturation of dendritic cells and activation of CD8 cytotoxic T cells as well as memory T cells to kill not only primary but also distant/metastatic breast tumors in female mice (i.e., the abscopal effect). Collectively, ICIE may enable an efficient and durable way to leverage the immune system for combating cancer and its metastasis.

摘要

癌症免疫疗法利用宿主的免疫系统识别和攻击肿瘤,是一种有前途的癌症治疗策略。然而,其疗效受到肿瘤微环境(TME)的免疫抑制(即免疫冷)的极大限制。在这里,我们报告了一种原位冷冻免疫工程(ICIE)策略,用于将 TME 从免疫“冷”转变为“热”。具体来说,在 ICIE 治疗后,不仅在接受冷冻手术的原发性肿瘤中,而且在没有冷冻的远处肿瘤中,CD8 细胞毒性 T 细胞与免疫抑制性调节性 T 细胞的比例增加了 100 多倍。这是通过将冷冻手术引起的“冻伤”与冷响应纳米颗粒结合来实现的,这些纳米颗粒不仅靶向肿瘤,而且在冷冻手术后迅速将抗癌药物和 PD-L1 沉默 siRNA 特异性释放到细胞质中。这种 ICIE 治疗导致强烈的免疫原性细胞死亡,促进树突状细胞的成熟和 CD8 细胞毒性 T 细胞以及记忆 T 细胞的激活,不仅可以杀死原发性肿瘤,还可以杀死女性小鼠的远处/转移性乳腺癌(即远隔效应)。总之,ICIE 可能为利用免疫系统对抗癌症及其转移提供一种有效和持久的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/494e8cce6711/41467_2023_36045_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/68c1127829a3/41467_2023_36045_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/92ab8ad73e94/41467_2023_36045_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/243433f1b22e/41467_2023_36045_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/091ca79d1738/41467_2023_36045_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/5bbc8022faef/41467_2023_36045_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/a9595b589b51/41467_2023_36045_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/6ad1e3a8a7a0/41467_2023_36045_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/494e8cce6711/41467_2023_36045_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/68c1127829a3/41467_2023_36045_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/92ab8ad73e94/41467_2023_36045_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/243433f1b22e/41467_2023_36045_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/091ca79d1738/41467_2023_36045_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/5bbc8022faef/41467_2023_36045_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/a9595b589b51/41467_2023_36045_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/6ad1e3a8a7a0/41467_2023_36045_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/9873931/494e8cce6711/41467_2023_36045_Fig8_HTML.jpg

相似文献

[1]
In-situ cryo-immune engineering of tumor microenvironment with cold-responsive nanotechnology for cancer immunotherapy.

Nat Commun. 2023-1-24

[2]
Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine.

Cancer Sci. 2015-2

[3]
Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy.

Int J Oncol. 2018-6-27

[4]
Ferrimagnetic Vortex Nanoring-Mediated Mild Magnetic Hyperthermia Imparts Potent Immunological Effect for Treating Cancer Metastasis.

ACS Nano. 2019-7-25

[5]
In situ immunogenic clearance induced by a combination of photodynamic therapy and rho-kinase inhibition sensitizes immune checkpoint blockade response to elicit systemic antitumor immunity against intraocular melanoma and its metastasis.

J Immunother Cancer. 2021-1

[6]
Combining Nanomedicine and Immunotherapy.

Acc Chem Res. 2019-5-23

[7]
Regulating the immunosuppressive tumor microenvironment to enhance breast cancer immunotherapy using pH-responsive hybrid membrane-coated nanoparticles.

J Nanobiotechnology. 2021-2-25

[8]
Syringeable Near-Infrared Light-Activated In Situ Immunogenic Hydrogel Boosts the Cancer-Immunity Cycle to Enhance Anticancer Immunity.

ACS Nano. 2024-6-11

[9]
DTX@VTX NPs synergy PD-L1 immune checkpoint nanoinhibitor to reshape immunosuppressive tumor microenvironment for enhancing chemo-immunotherapy.

J Mater Chem B. 2021-9-22

[10]
Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy.

Theranostics. 2020

引用本文的文献

[1]
High-Yield Convenient Mass Production of High-Quality Homogenous Human Induced Pluripotent Stem Cell Spheroids under Rho-Associated Kinase Inhibitor-Free 3D Culture Enabled by Micropatterning and Cold-Triggered Chemical-Free Cell Detachment.

Small Sci. 2025-7-11

[2]
Future theranostic strategies: emerging ovarian cancer biomarkers to bridge the gap between diagnosis and treatment.

Front Drug Deliv. 2024-2-1

[3]
Nanostrategies synergize with locoregional interventional therapies for boosting antitumor immunity.

Bioact Mater. 2025-5-31

[4]
Cryoablation in the treatment of early breast cancer: a comprehensive analysis.

Front Oncol. 2025-5-20

[5]
Cryoablation for breast cancer: a narrative review of advances, clinical applications, and future challenges.

Transl Cancer Res. 2025-2-28

[6]
Multifunctional nanoparticles and collagenase dual loaded thermosensitive hydrogel system for enhanced tumor-penetration, reversed immune suppression and photodynamic-immunotherapy.

Bioact Mater. 2025-2-12

[7]
Targets Involved in the Pharmacology of Bothrops Snakebite: and Future Perspectives.

Curr Drug Targets. 2025

[8]
Ultrasound-triggered and glycosylation inhibition-enhanced tumor piezocatalytic immunotherapy.

Nat Commun. 2024-10-18

[9]
An Immune-Enhancing Injectable Hydrogel Loaded with Esketamine and DDP Promotes Painless Immunochemotherapy to Inhibit Breast Cancer Growth.

Adv Healthc Mater. 2024-11

[10]
Hydrazone-functionalized nanoscale covalent organic frameworks as a nanocarrier for pH-responsive drug delivery enhanced anticancer activity.

RSC Adv. 2024-7-1

本文引用的文献

[1]
Non-viral precision T cell receptor replacement for personalized cell therapy.

Nature. 2023-3

[2]
Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy.

Nat Commun. 2022-2-9

[3]
Cancer statistics, 2022.

CA Cancer J Clin. 2022-1

[4]
An organoid-based screen for epigenetic inhibitors that stimulate antigen presentation and potentiate T-cell-mediated cytotoxicity.

Nat Biomed Eng. 2021-11

[5]
Resident and circulating memory T cells persist for years in melanoma patients with durable responses to immunotherapy.

Nat Cancer. 2021-3

[6]
Cryoablation and Immunotherapy for Breast Cancer: Overview and Rationale for Combined Therapy.

Radiol Imaging Cancer. 2021-3

[7]
Lipid signalling enforces functional specialization of T cells in tumours.

Nature. 2021-3

[8]
A guide to cancer immunotherapy: from T cell basic science to clinical practice.

Nat Rev Immunol. 2020-5-20

[9]
Regulatory myeloid cells paralyze T cells through cell-cell transfer of the metabolite methylglyoxal.

Nat Immunol. 2020-4-23

[10]
BRCAness, SLFN11, and RB1 loss predict response to topoisomerase I inhibitors in triple-negative breast cancers.

Sci Transl Med. 2020-2-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索