文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

未来的诊疗策略:新兴的卵巢癌生物标志物以弥合诊断与治疗之间的差距。

Future theranostic strategies: emerging ovarian cancer biomarkers to bridge the gap between diagnosis and treatment.

作者信息

Rajapaksha Weranga, Khetan Riya, Johnson Ian R D, Blencowe Anton, Garg Sanjay, Albrecht Hugo, Gillam Todd A

机构信息

Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia.

Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia.

出版信息

Front Drug Deliv. 2024 Feb 1;4:1339936. doi: 10.3389/fddev.2024.1339936. eCollection 2024.


DOI:10.3389/fddev.2024.1339936
PMID:40836974
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12363270/
Abstract

Ovarian cancers are a complex and heterogenic group of malignancies that are difficult to detect, diagnose and treat. Fortunately, considerable knowledge of ovarian cancer specific biomarkers has been generated, that is pertinent to the development of novel theranostic platforms by combining therapies and diagnostics. Genomic and proteomic data has been invaluable in providing critical biomolecular targets for ovarian cancer theranostic approaches. Exploitation of the wealth of biomarker research that has been conducted offers viable targets as beacons for ovarian cancer detection, diagnosis, and therapeutic targeting. These markers can be used in theranostics, a treatment strategy that combines therapy and diagnostics and is common in nuclear medicine, where radionuclides are used for both diagnosis and treatment. The development of theranostics has taken substantial focus in recent years in the battle against ovarian cancer. Yet to date only one theranostic technology has emerged in clinical practice. However, given the wealth of ovarian cancer biomarkers the field is poised to see the emergence of revolutionary disease treatment and monitoring outcomes through their incorporation into the development of theranostic strategies. The future of ovarian cancer treatment is set to enable precise diagnosis, targeted treatment, and vigilant monitoring. This review aims to assess the status of ovarian cancer diagnostic tools and biomarkers in practice, clinical development, or pre-clinical development, highlighting newly emerging theranostic applications.

摘要

卵巢癌是一类复杂且异质性的恶性肿瘤,难以检测、诊断和治疗。幸运的是,已经产生了大量关于卵巢癌特异性生物标志物的知识,这与通过结合治疗和诊断来开发新型诊疗平台相关。基因组和蛋白质组数据对于为卵巢癌诊疗方法提供关键生物分子靶点具有重要价值。对已开展的大量生物标志物研究的利用提供了可行的靶点,作为卵巢癌检测、诊断和治疗靶向的指引。这些标志物可用于诊疗学,这是一种将治疗和诊断相结合的治疗策略,在核医学中很常见,其中放射性核素用于诊断和治疗。近年来,诊疗学的发展在对抗卵巢癌的斗争中受到了极大关注。然而,迄今为止,临床实践中仅出现了一种诊疗技术。不过,鉴于丰富的卵巢癌生物标志物,通过将它们纳入诊疗策略的开发中,该领域有望出现革命性的疾病治疗和监测成果。卵巢癌治疗的未来将实现精确诊断、靶向治疗和严密监测。本综述旨在评估卵巢癌诊断工具和生物标志物在实践、临床开发或临床前开发中的现状,突出新出现的诊疗应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d44/12363270/5296e826ca81/fddev-04-1339936-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d44/12363270/7ae3f9514540/fddev-04-1339936-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d44/12363270/5296e826ca81/fddev-04-1339936-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d44/12363270/7ae3f9514540/fddev-04-1339936-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d44/12363270/5296e826ca81/fddev-04-1339936-g002.jpg

相似文献

[1]
Future theranostic strategies: emerging ovarian cancer biomarkers to bridge the gap between diagnosis and treatment.

Front Drug Deliv. 2024-2-1

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[4]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

[5]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[6]
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.

Alzheimers Dement. 2021-4

[7]
Short-Term Memory Impairment

2025-1

[8]
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.

Clin Orthop Relat Res. 2025-1-1

[9]
[Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data].

Epidemiol Prev. 2013

[10]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

本文引用的文献

[1]
Targeting CD24 as a novel immunotherapy for solid cancers.

Cell Commun Signal. 2023-11-2

[2]
Advanced stage, high-grade primary tumor ovarian cancer: a multi-omics dissection and biomarker prediction process.

Sci Rep. 2023-10-12

[3]
Clinicopathologic Impact of NANOG, ZEB1, and EpCAM Biomarkers on Prognosis of Serous Ovarian Carcinoma.

Asian Pac J Cancer Prev. 2023-9-1

[4]
A multimodal radiomic machine learning approach to predict the LCK expression and clinical prognosis in high-grade serous ovarian cancer.

Sci Rep. 2023-9-29

[5]
Diagnostic value of CA125, HE4, and systemic immune-inflammation index in the preoperative investigation of ovarian masses.

Medicine (Baltimore). 2023-9-15

[6]
Prediction of benign and malignant ovarian tumors using Resnet34 on ultrasound images.

J Obstet Gynaecol Res. 2023-12

[7]
Integrating Artificial Intelligence Tools in the Clinical Research Setting: The Ovarian Cancer Use Case.

Diagnostics (Basel). 2023-8-30

[8]
Ligand-based adoptive T cell targeting CA125 in ovarian cancer.

J Transl Med. 2023-9-5

[9]
Influence of lymphadenectomy on survival and recurrence in patients with early-stage epithelial ovarian cancer: a meta-analysis.

BMC Womens Health. 2023-9-4

[10]
Clinicopathological and prognostic value of epithelial cell adhesion molecule in solid tumours: a meta-analysis.

Front Oncol. 2023-8-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索