Suppr超能文献

长链非编码 RNA 标志物在 II 期结肠癌患者中的预后和预测价值。

Prognostic and predictive value of a lncRNA signature in patients with stage II colon cancer.

机构信息

Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China.

Department of Gastroenterology, Central Hospital, Shandong First Medical University, Jinan, 250011, Shandong Province, People's Republic of China.

出版信息

Sci Rep. 2023 Jan 24;13(1):1350. doi: 10.1038/s41598-022-25852-5.

Abstract

The current staging method is inadequate to identify high-risk recurrence patients with stage II colon cancer (CC). Using a systematic and comprehensive-biomarker discovery and validation method, we aimed to construct a lncRNA-based signature to improve the prognostic prediction of stage II CC. We identified 1,377 differently expressed lncRNAs by analyzing 16 paired stage II CC tumor tissue and adjacent normal mucosal tissue from the TCGA dataset. Subsequently, using a univariable and step multivariable Cox regression model, we trained an 11-lncRNA signature in the training cohort (n = 141), which could divide patients into high-risk and low-risk groups (AUC at 3 years = 0.801, 95% CI: 0.724-0.877; AUC at 5 years = 0.801, 95% CI: 0.718-0.885). Significantly, patients in the high-risk group had poorer recurrence-free survival (RFS) compared with the low-risk group (log-rank test, P < 0.001 in the training cohort). This lncRNA-based signature was further confirmed in the validation cohort (P < 0.001). Multivariate Cox regression and stratified survival analyses showed that the prognostic value of this signature was independent of other clinicopathological risk factors (CEA, T stage, and chemotherapy). Time-dependent receiver operating characteristic (ROC) analysis demonstrated that this signature had better prognostic ability than any other clinical risk factors or single lncRNAs (all P < 0.05). A nomogram was constructed for clinical use, which integrated both the lncRNA-based signature and clinical risk factors (CEA and T stage) and performed well in the calibration plots. Altogether, our lncRNA-based signature was an independent prognostic factor and possessed a stronger predictive power compared with the currently used clinicopathological risk factors when predicting the recurrence of patients with stage II CC. Collectively, this lncRNA-based signature might facilitate individualized treatment decisions and postoperative counseling, ultimately contributing to improved survival.

摘要

目前的分期方法不足以识别 II 期结肠癌(CC)的高危复发患者。我们使用系统和全面的生物标志物发现和验证方法,旨在构建基于长链非编码 RNA(lncRNA)的特征,以改善 II 期 CC 的预后预测。我们通过分析 TCGA 数据集 16 对 II 期 CC 肿瘤组织和相邻正常黏膜组织,鉴定出 1377 个差异表达的 lncRNA。随后,我们使用单变量和逐步多变量 Cox 回归模型,在训练队列(n=141)中训练了一个 11-lncRNA 特征,该特征可以将患者分为高危和低危组(3 年 AUC=0.801,95%CI:0.724-0.877;5 年 AUC=0.801,95%CI:0.718-0.885)。重要的是,高危组患者的无复发生存率(RFS)明显低于低危组(对数秩检验,P<0.001,在训练队列中)。该 lncRNA 特征在验证队列中进一步得到验证(P<0.001)。多变量 Cox 回归和分层生存分析表明,该特征的预后价值独立于其他临床病理危险因素(CEA、T 分期和化疗)。时间依赖性接受者操作特征(ROC)分析表明,该特征的预后能力优于任何其他临床危险因素或单个 lncRNA(均 P<0.05)。构建了一个列线图用于临床应用,该列线图整合了 lncRNA 特征和临床危险因素(CEA 和 T 分期),在校准图中表现良好。总之,我们的 lncRNA 特征是一个独立的预后因素,与目前使用的临床病理危险因素相比,在预测 II 期 CC 患者的复发方面具有更强的预测能力。总的来说,该 lncRNA 特征可能有助于个体化治疗决策和术后咨询,最终提高生存率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8180/9873786/04debb036842/41598_2022_25852_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验