Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Spark Therapeutics, Philadelphia, PA, USA.
Commun Biol. 2023 Jan 24;6(1):95. doi: 10.1038/s42003-023-04469-y.
Previous studies have conducted time course characterization of murine colitis models through transcriptional profiling of differential expression. We characterize the transcriptional landscape of acute and chronic models of dextran sodium sulfate (DSS) and adoptive transfer (AT) colitis to derive temporal gene expression and splicing signatures in blood and colonic tissue in order to capture dynamics of colitis remission and relapse. We identify sub networks of patient-derived causal networks that are enriched in these temporal signatures to distinguish acute and chronic disease components within the broader molecular landscape of IBD. The interaction between the DSS phenotype and chronological time-point naturally defines parsimonious temporal gene expression and splicing signatures associated with acute and chronic phases disease (as opposed to ordinary time-specific differential expression/splicing). We show these expression and splicing signatures are largely orthogonal, i.e. affect different genetic bodies, and that using machine learning, signatures are predictive of histopathological measures from both blood and intestinal data in murine colitis models as well as an independent cohort of IBD patients. Through access to longitudinal multi-scale profiling from disease tissue in IBD patient cohorts, we can apply this machine learning pipeline to generation of direct patient temporal multimodal regulatory signatures for prediction of histopathological outcomes.
先前的研究通过差异表达的转录谱分析对小鼠结肠炎模型进行了时程特征描述。我们对葡聚糖硫酸钠(DSS)和过继转移(AT)结肠炎的急性和慢性模型的转录组进行了特征描述,以获得血液和结肠组织中时相基因表达和剪接特征,从而捕捉结肠炎缓解和复发的动态。我们确定了源自患者的因果网络子网络,这些网络在更广泛的 IBD 分子景观中富集了这些时相特征,以区分急性和慢性疾病成分。DSS 表型和时间点之间的相互作用自然定义了与急性和慢性疾病阶段相关的简约时相基因表达和剪接特征(而不是普通的特定时间差异表达/剪接)。我们表明这些表达和剪接特征在很大程度上是正交的,即影响不同的基因体,并且使用机器学习,这些特征可以预测来自小鼠结肠炎模型和独立的 IBD 患者队列的血液和肠道数据的组织病理学测量。通过从 IBD 患者队列的疾病组织中获得纵向多尺度分析,我们可以将这种机器学习管道应用于生成直接患者时相多模态调节特征,以预测组织病理学结果。