Suppr超能文献

短串联重复多态性在环孢素 19B 启动子区域驱动其转录上调,并有助于疟原虫恶性疟原虫的耐药性。

Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum.

机构信息

School of Biological Sciences, Nanyang Technological University, Singapore.

Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

出版信息

PLoS Pathog. 2023 Jan 25;19(1):e1011118. doi: 10.1371/journal.ppat.1011118. eCollection 2023 Jan.

Abstract

Resistance of the human malaria parasites, Plasmodium falciparum, to artemisinins is now fully established in Southeast Asia and is gradually emerging in Sub-Saharan Africa. Although nonsynonymous SNPs in the pfk13 Kelch-repeat propeller (KREP) domain are clearly associated with artemisinin resistance, their functional relevance requires cooperation with other genetic factors/alterations of the P. falciparum genome, collectively referred to as genetic background. Here we provide experimental evidence that P. falciparum cyclophilin 19B (PfCYP19B) may represent one putative factor in this genetic background, contributing to artemisinin resistance via its increased expression. We show that overexpression of PfCYP19B in vitro drives limited but significant resistance to not only artemisinin but also piperaquine, an important partner drug in artemisinin-based combination therapies. We showed that PfCYP19B acts as a negative regulator of the integrated stress response (ISR) pathway by modulating levels of phosphorylated eIF2α (eIF2α-P). Curiously, artemisinin and piperaquine affect eIF2α-P in an inverse direction that in both cases can be modulated by PfCYP19B towards resistance. Here we also provide evidence that the upregulation of PfCYP19B in the drug-resistant parasites appears to be maintained by a short tandem repeat (SRT) sequence polymorphism in the gene's promoter region. These results support a model that artemisinin (and other drugs) resistance mechanisms are complex genetic traits being contributed to by altered expression of multiple genes driven by genetic polymorphism at their promoter regions.

摘要

人类疟原虫对青蒿素的耐药性现已在东南亚完全确立,并逐渐出现在撒哈拉以南非洲地区。尽管 pfk13 半胱氨酸丰富区 Kelch 重复螺旋(KREP)结构域中的非同义 SNP 显然与青蒿素耐药性相关,但它们的功能相关性需要与其他遗传因素/疟原虫基因组的其他改变(统称为遗传背景)共同作用。在这里,我们提供了实验证据表明,疟原虫环孢素 19B(PfCYP19B)可能是遗传背景中的一个潜在因素,通过增加其表达来促进青蒿素耐药性。我们表明,PfCYP19B 在体外的过表达不仅导致对青蒿素而且对哌喹(青蒿素联合疗法中的重要伴侣药物)产生有限但显著的耐药性。我们表明,PfCYP19B 通过调节磷酸化 eIF2α(eIF2α-P)的水平来充当整合应激反应(ISR)途径的负调节剂。奇怪的是,青蒿素和哌喹以相反的方式影响 eIF2α-P,在这两种情况下,PfCYP19B 都可以将其调节为耐药性。在这里,我们还提供了证据表明,耐药寄生虫中 PfCYP19B 的上调似乎是由基因启动子区域中的短串联重复(SRT)序列多态性维持的。这些结果支持了一种模型,即青蒿素(和其他药物)耐药机制是复杂的遗传特征,由其启动子区域的遗传多态性驱动的多个基因的改变表达所促成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e4c/9901795/7aec9df16062/ppat.1011118.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验