Qiu Shangkun, Blank Lars M
Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany.
J Agric Food Chem. 2023 Feb 8;71(5):2197-2210. doi: 10.1021/acs.jafc.2c06888. Epub 2023 Jan 25.
Plant natural products are a seemingly endless resource for novel chemical structures. However, their extraction often results in high prices, fluctuation in both quantity and quality, and negative environmental impact. The latter might result from the extraction procedure but more often from the high amount of plant biomass required. With the advent of synthetic biology, producing natural plant products in large quantities using yeasts as hosts has become possible. Here, we focus on the recent advances in metabolic engineering of the yeasts species and for the synthesis of ginsenoside triterpenoids, namely, dammarenediol-II, protopanaxadiol, protopanaxatriol, compound K, ginsenoside Rh1, ginsenoside Rh2, ginsenoside Rg3, and ginsenoside F1. A discussion is provided on advanced synthetic biology, bioprocess strategies, and current challenges for the biosynthesis of ginsenoside triterpenoids. Finally, future directions in metabolic and process engineering are summarized and may help reify sustainable ginsenoside production.
植物天然产物是新型化学结构的一个看似无穷无尽的资源。然而,它们的提取往往导致价格高昂、数量和质量波动以及负面环境影响。后者可能源于提取过程,但更常见的是源于所需植物生物量的大量消耗。随着合成生物学的出现,利用酵母作为宿主大量生产天然植物产品已成为可能。在此,我们重点关注酿酒酵母和毕赤酵母在代谢工程方面的最新进展,用于合成人参皂苷三萜类化合物,即达玛烯二醇-II、原人参二醇、原人参三醇、化合物K、人参皂苷Rh1、人参皂苷Rh2、人参皂苷Rg3和人参皂苷F1。本文还讨论了先进的合成生物学、生物工艺策略以及人参皂苷三萜类化合物生物合成的当前挑战。最后,总结了代谢和过程工程的未来方向,这可能有助于实现可持续的人参皂苷生产。