Suppr超能文献

用于药物发现的人工智能:资源、方法及应用

Artificial intelligence for drug discovery: Resources, methods, and applications.

作者信息

Chen Wei, Liu Xuesong, Zhang Sanyin, Chen Shilin

机构信息

State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.

Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.

出版信息

Mol Ther Nucleic Acids. 2023 Feb 18;31:691-702. doi: 10.1016/j.omtn.2023.02.019. eCollection 2023 Mar 14.

Abstract

Conventional wet laboratory testing, validations, and synthetic procedures are costly and time-consuming for drug discovery. Advancements in artificial intelligence (AI) techniques have revolutionized their applications to drug discovery. Combined with accessible data resources, AI techniques are changing the landscape of drug discovery. In the past decades, a series of AI-based models have been developed for various steps of drug discovery. These models have been used as complements of conventional experiments and have accelerated the drug discovery process. In this review, we first introduced the widely used data resources in drug discovery, such as ChEMBL and DrugBank, followed by the molecular representation schemes that convert data into computer-readable formats. Meanwhile, we summarized the algorithms used to develop AI-based models for drug discovery. Subsequently, we discussed the applications of AI techniques in pharmaceutical analysis including predicting drug toxicity, drug bioactivity, and drug physicochemical property. Furthermore, we introduced the AI-based models for de novo drug design, drug-target structure prediction, drug-target interaction, and binding affinity prediction. Moreover, we also highlighted the advanced applications of AI in drug synergism/antagonism prediction and nanomedicine design. Finally, we discussed the challenges and future perspectives on the applications of AI to drug discovery.

摘要

传统的湿实验室测试、验证和合成程序对于药物发现来说成本高昂且耗时。人工智能(AI)技术的进步彻底改变了其在药物发现中的应用。结合可获取的数据资源,AI技术正在改变药物发现的格局。在过去几十年里,已经为药物发现的各个步骤开发了一系列基于AI的模型。这些模型已被用作传统实验的补充,并加速了药物发现过程。在这篇综述中,我们首先介绍了药物发现中广泛使用的数据资源,如ChEMBL和DrugBank,接着介绍了将数据转换为计算机可读格式的分子表示方案。同时,我们总结了用于开发基于AI的药物发现模型的算法。随后,我们讨论了AI技术在药物分析中的应用,包括预测药物毒性、药物生物活性和药物物理化学性质。此外,我们介绍了用于从头药物设计、药物靶点结构预测、药物-靶点相互作用和结合亲和力预测的基于AI的模型。而且,我们还强调了AI在药物协同/拮抗预测和纳米药物设计中的先进应用。最后,我们讨论了AI应用于药物发现所面临的挑战和未来前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae2b/10009646/fa5a44b203c2/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验