Hatcher Lauren E, Warren Mark R, Skelton Jonathan M, Pallipurath Anuradha R, Saunders Lucy K, Allan David R, Hathaway Paul, Crevatin Giulio, Omar David, Williams Ben H, Coulson Ben A, Wilson Chick C, Raithby Paul R
Department of Chemistry, University of Bath, Bath, UK.
School of Chemistry, Cardiff University, Cardiff, UK.
Commun Chem. 2022 Aug 26;5(1):102. doi: 10.1038/s42004-022-00716-1.
The visualization of chemical processes that occur in the solid-state is key to the design of new functional materials. One of the challenges in these studies is to monitor the processes across a range of timescales in real-time. Here, we present a pump-multiprobe single-crystal X-ray diffraction (SCXRD) technique for studying photoexcited solid-state species with millisecond-to-minute lifetimes. We excite using pulsed LEDs and synchronise to a gated X-ray detector to collect 3D structures with sub-second time resolution while maximising photo-conversion and minimising beam damage. Our implementation provides complete control of the pump-multiprobe sequencing and can access a range of timescales using the same setup. Using LEDs allows variation of the intensity and pulse width and ensures uniform illumination of the crystal, spreading the energy load in time and space. We demonstrate our method by studying the variable-temperature kinetics of photo-activated linkage isomerism in [Pd(Budien)(NO)][BPh] single-crystals. We further show that our method extends to following indicative Bragg reflections with a continuous readout Timepix3 detector chip. Our approach is applicable to a range of physical and biological processes that occur on millisecond and slower timescales, which cannot be studied using existing techniques.
固态中发生的化学过程的可视化是新型功能材料设计的关键。这些研究中的挑战之一是实时监测一系列时间尺度上的过程。在此,我们提出一种泵浦-多探针单晶X射线衍射(SCXRD)技术,用于研究具有毫秒至分钟寿命的光激发固态物种。我们使用脉冲发光二极管进行激发,并与门控X射线探测器同步,以亚秒级的时间分辨率收集三维结构,同时最大化光转换并最小化光束损伤。我们的实现方式提供了对泵浦-多探针序列的完全控制,并且可以使用相同的装置访问一系列时间尺度。使用发光二极管允许改变强度和脉冲宽度,并确保晶体的均匀照明,在时间和空间上分散能量负载。我们通过研究[Pd(Budien)(NO)][BPh]单晶中光活化键合异构化的变温动力学来展示我们的方法。我们进一步表明,我们的方法可以扩展到使用连续读出的Timepix3探测器芯片跟踪指示性布拉格反射。我们的方法适用于一系列发生在毫秒及更慢时间尺度上的物理和生物过程,而这些过程无法使用现有技术进行研究。