Sierra Juan S, Pineda Jesus, Rueda Daniela, Tello Alejandro, Prada Angélica M, Galvis Virgilio, Volpe Giovanni, Millan Maria S, Romero Lenny A, Marrugo Andres G
Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena, Colombia.
Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden.
Biomed Opt Express. 2022 Dec 19;14(1):335-351. doi: 10.1364/BOE.477495. eCollection 2023 Jan 1.
Specular microscopy assessment of the human corneal endothelium (CE) in Fuchs' dystrophy is challenging due to the presence of dark image regions called guttae. This paper proposes a UNet-based segmentation approach that requires minimal post-processing and achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs' dystrophy. We cast the segmentation problem as a regression task of the cell and gutta signed distance maps instead of a pixel-level classification task as typically done with UNets. Compared to the conventional UNet classification approach, the distance-map regression approach converges faster in clinically relevant parameters. It also produces morphometric parameters that agree with the manually-segmented ground-truth data, namely the average cell density difference of -41.9 cells/mm (95% confidence interval (CI) [-306.2, 222.5]) and the average difference of mean cell area of 14.8 (95% CI [-41.9, 71.5]). These results suggest a promising alternative for CE assessment.
由于存在称为角膜小滴的暗图像区域,对Fuchs角膜内皮营养不良患者的人角膜内皮(CE)进行镜面显微镜评估具有挑战性。本文提出了一种基于UNet的分割方法,该方法需要最少的后处理,并能在所有程度的Fuchs角膜内皮营养不良中实现可靠的CE形态计量评估和角膜小滴识别。我们将分割问题视为细胞和角膜小滴符号距离图的回归任务,而不是像通常使用UNet那样的像素级分类任务。与传统的UNet分类方法相比,距离图回归方法在临床相关参数上收敛更快。它还产生与手动分割的真实数据一致的形态计量参数,即平均细胞密度差为-41.9个细胞/mm²(95%置信区间(CI)[-306.2, 222.5])和平均细胞面积差为14.8μm²(95% CI [-41.9, 71.5])。这些结果表明这是一种有前景的CE评估替代方法。