Vicar Tomas, Chmelik Jiri, Jakubicek Roman, Chmelikova Larisa, Gumulec Jaromir, Balvan Jan, Provaznik Ivo, Kolar Radim
Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic.
Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Biomed Opt Express. 2021 Sep 24;12(10):6514-6528. doi: 10.1364/BOE.433212. eCollection 2021 Oct 1.
In this paper, a novel U-Net-based method for robust adherent cell segmentation for quantitative phase microscopy image is designed and optimised. We designed and evaluated four specific post-processing pipelines. To increase the transferability to different cell types, non-deep learning transfer with adjustable parameters is used in the post-processing step. Additionally, we proposed a self-supervised pretraining technique using nonlabelled data, which is trained to reconstruct multiple image distortions and improved the segmentation performance from 0.67 to 0.70 of object-wise intersection over union. Moreover, we publish a new dataset of manually labelled images suitable for this task together with the unlabelled data for self-supervised pretraining.
在本文中,我们设计并优化了一种基于U-Net的新方法,用于对定量相显微镜图像中的贴壁细胞进行稳健分割。我们设计并评估了四种特定的后处理管道。为了提高对不同细胞类型的可转移性,在后处理步骤中使用了具有可调参数的非深度学习迁移方法。此外,我们提出了一种使用未标记数据的自监督预训练技术,该技术经过训练以重建多种图像失真,并将对象级交并比的分割性能从0.67提高到0.70。此外,我们发布了一个适用于此任务的新的手动标注图像数据集以及用于自监督预训练的未标记数据。