Department of Chemistry, The University of Engineering and Technology, Lahore-54000, Punjab, Pakistan.
Department of Oncology, Institute of Nuclear Medicine and Oncology (INMOL), Lahore-54000, Punjab, Pakistan.
Appl Biochem Biotechnol. 2023 Jul;195(7):4469-4484. doi: 10.1007/s12010-023-04345-9. Epub 2023 Jan 26.
The aim of the current study is to design the radiolabeled and drug-loaded nanocarrier with high loading capacity and pH-dependent drug release characteristics that could effectively transport loaded compounds to various organs for efficient diagnostic imaging and chemotherapeutic drug delivery. The aqueous extract of green tea leaves was used to synthesize the small-sized iron oxide nanoparticles (IONPs). The nanoparticles were characterized with UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray analysis (EDX). Iron oxide nanoparticles with sizes smaller than 50 nm were successfully synthesized, making them suitable for in vivo studies. In drug loading trials, 94% of the drug was loaded onto the active surface of iron oxide nanoparticles from the solution. The in vitro drug release study revealed that an acidic environment (pH 4.5) effectively triggers the release of doxorubicin (DOX) from the nanoparticles as compared to a neutral environment (pH 7.4). The gamma-emitting radionuclide Tc was successfully labeled with IONPs for biodistribution and imaging studies. The efficiency of radiolabeling was observed to be ≥ 99%. Furthermore, the in vivo biodistribution study of radiolabeled IONPs in rabbit model showed rapid accumulation in various organs such as heart, liver, and kidneys. This work suggested that green synthesized iron oxide nanoparticles are potential nanocarriers for diagnostic imaging and efficiently distributing DOX to specific organs. The aqueous extract of green tea leaves was used for the facile green synthesis of iron oxide nanoparticles (IONPs). Furthermore, the chemotherapeutic drug doxorubicin (DOX) and gamma-emitting radionuclide Tc were loaded on these iron oxide nanoparticles to evaluate the in vivo biodistribution and drug delivery studies in the rabbit models.
本研究旨在设计具有高载药量和 pH 依赖性药物释放特性的放射性标记和载药纳米载体,能够将负载化合物有效递送至各种器官,实现高效的诊断成像和化疗药物递送。采用绿茶水提物合成了小尺寸的氧化铁纳米颗粒(IONPs)。通过紫外-可见光谱、傅里叶变换红外光谱(FTIR)、X 射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和能谱分析(EDX)对纳米颗粒进行了表征。成功合成了尺寸小于 50nm 的氧化铁纳米颗粒,使其适合于体内研究。在药物载药试验中,94%的药物从溶液中被负载到氧化铁纳米颗粒的活性表面上。体外药物释放研究表明,与中性环境(pH 7.4)相比,酸性环境(pH 4.5)能有效地触发阿霉素(DOX)从纳米颗粒中释放。放射性核素 Tc 成功地标记到 IONPs 上,用于生物分布和成像研究。放射性标记的效率观察到≥99%。此外,在兔模型中的放射性标记 IONPs 的体内生物分布研究表明,它们能快速在各种器官(如心脏、肝脏和肾脏)中积累。这项工作表明,绿茶合成的氧化铁纳米颗粒是用于诊断成像和将 DOX 高效递送至特定器官的潜在纳米载体。采用绿茶水提物进行了简便的绿色合成氧化铁纳米颗粒(IONPs)。此外,还将化疗药物阿霉素(DOX)和放射性核素 Tc 加载到这些氧化铁纳米颗粒上,以评估兔模型中的体内生物分布和药物递送研究。
Appl Biochem Biotechnol. 2023-7
Int J Pharm. 2015-5-18
Mater Sci Eng C Mater Biol Appl. 2019-3-4
ACS Pharmacol Transl Sci. 2024-1-24
Nanomaterials (Basel). 2020-10-23
J Control Release. 2014-12-4
NMR Biomed. 2012-10-15