文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用 IFNα-2b 偶联超顺磁纳米粒子的磁弛豫切换分析检测抗干扰素抗体。

Magnetic Relaxation Switching Assay Using IFNα-2b-Conjugated Superparamagnetic Nanoparticles for Anti-Interferon Antibody Detection.

机构信息

Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia.

Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia.

出版信息

Biosensors (Basel). 2023 Jun 5;13(6):624. doi: 10.3390/bios13060624.


DOI:10.3390/bios13060624
PMID:37366989
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10296438/
Abstract

Type I interferons, particularly IFNα-2b, play essential roles in eliciting adaptive and innate immune responses, being implicated in the pathogenesis of various diseases, including cancer, and autoimmune and infectious diseases. Therefore, the development of a highly sensitive platform for analysis of either IFNα-2b or anti-IFNα-2b antibodies is of high importance to improve the diagnosis of various pathologies associated with the IFNα-2b disbalance. For evaluation of the anti-IFNα-2b antibody level, we have synthesized superparamagnetic iron oxide nanoparticles (SPIONs) coupled with the recombinant human IFNα-2b protein (SPIONs@IFNα-2b). Employing a magnetic relaxation switching assay (MRSw)-based nanosensor, we detected picomolar concentrations (0.36 pg/mL) of anti-INFα-2b antibodies. The high sensitivity of the real-time antibodies' detection was ensured by the specificity of immune responses and the maintenance of resonance conditions for water spins by choosing a high-frequency filling of short radio-frequency pulses of the generator. The formation of a complex of the SPIONs@IFNα-2b nanoparticles with the anti-INFα-2b antibodies led to a cascade process of the formation of nanoparticle clusters, which was further enhanced by exposure to a strong (7.1 T) homogenous magnetic field. Obtained magnetic conjugates exhibited high negative MR contrast-enhancing properties (as shown by NMR studies) that were also preserved when particles were administered in vivo. Thus, we observed a 1.2-fold decrease of the T2 relaxation time in the liver following administration of magnetic conjugates as compared to the control. In conclusion, the developed MRSw assay based on SPIONs@IFNα-2b nanoparticles represents an alternative immunological probe for the estimation of anti-IFNα-2b antibodies that could be further employed in clinical studies.

摘要

I 型干扰素,特别是 IFNα-2b,在引发适应性和先天免疫反应方面发挥着重要作用,与包括癌症、自身免疫和传染病在内的各种疾病的发病机制有关。因此,开发一种高度敏感的分析平台,用于分析 IFNα-2b 或抗 IFNα-2b 抗体,对于改善与 IFNα-2b 失衡相关的各种病理的诊断具有重要意义。为了评估抗 IFNα-2b 抗体水平,我们合成了超顺磁性氧化铁纳米粒子(SPIONs)与重组人 IFNα-2b 蛋白(SPIONs@IFNα-2b)偶联。我们采用基于磁共振弛豫切换检测(MRSw)的纳米传感器,检测出皮摩尔浓度(0.36 pg/mL)的抗-INFα-2b 抗体。通过选择高频填充短射频脉冲发生器,保证了免疫反应的特异性和水自旋的共振条件,实现了实时抗体检测的高灵敏度。SPIONs@IFNα-2b 纳米粒子与抗-INFα-2b 抗体形成复合物,导致纳米粒子簇的级联形成,进一步通过暴露于强(7.1 T)均匀磁场得到增强。所获得的磁性结合物表现出高的负磁共振对比增强特性(如 NMR 研究所示),当颗粒在体内给药时也得到保留。因此,与对照组相比,在给予磁性结合物后,我们观察到肝脏的 T2 弛豫时间降低了 1.2 倍。总之,基于 SPIONs@IFNα-2b 纳米粒子的开发的 MRSw 检测方法代表了一种替代免疫探针,用于估计抗 IFNα-2b 抗体,可进一步用于临床研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/574719ad2034/biosensors-13-00624-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/931c5b20d53e/biosensors-13-00624-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/debec8950632/biosensors-13-00624-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/320b4305ac12/biosensors-13-00624-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/9aef24df27a7/biosensors-13-00624-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/146667126db5/biosensors-13-00624-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/d1f280f4e30b/biosensors-13-00624-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/97dc35a942e6/biosensors-13-00624-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/1316388ce252/biosensors-13-00624-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/b7a6e17498f9/biosensors-13-00624-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/73211d479dc2/biosensors-13-00624-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/fff35b10d098/biosensors-13-00624-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/5302c61b2b6c/biosensors-13-00624-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/9135db014b3a/biosensors-13-00624-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/574719ad2034/biosensors-13-00624-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/931c5b20d53e/biosensors-13-00624-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/debec8950632/biosensors-13-00624-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/320b4305ac12/biosensors-13-00624-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/9aef24df27a7/biosensors-13-00624-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/146667126db5/biosensors-13-00624-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/d1f280f4e30b/biosensors-13-00624-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/97dc35a942e6/biosensors-13-00624-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/1316388ce252/biosensors-13-00624-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/b7a6e17498f9/biosensors-13-00624-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/73211d479dc2/biosensors-13-00624-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/fff35b10d098/biosensors-13-00624-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/5302c61b2b6c/biosensors-13-00624-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/9135db014b3a/biosensors-13-00624-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b138/10296438/574719ad2034/biosensors-13-00624-g014.jpg

相似文献

[1]
Magnetic Relaxation Switching Assay Using IFNα-2b-Conjugated Superparamagnetic Nanoparticles for Anti-Interferon Antibody Detection.

Biosensors (Basel). 2023-6-5

[2]
PEGylated Bilirubin-coated Iron Oxide Nanoparticles as a Biosensor for Magnetic Relaxation Switching-based ROS Detection in Whole Blood.

Theranostics. 2020

[3]
The preliminary study of immune superparamagnetic iron oxide nanoparticles for the detection of lung cancer in magnetic resonance imaging.

Carbohydr Res. 2016-1

[4]
Effects of superparamagnetic iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized xenon gas.

J Magn Reson. 2018-4-5

[5]
Spatial Organization of Superparamagnetic Iron Oxide Nanoparticles in/on Nano/Microsized Carriers Modulates the Magnetic Resonance Signal.

Langmuir. 2018-12-7

[6]
An LF-NMR homogeneous immunoassay for Vibrio parahaemolyticus based on superparamagnetic 2D nanomaterials.

Talanta. 2024-2-1

[7]
Clustering superparamagnetic iron oxide nanoparticles produces organ-targeted high-contrast magnetic resonance images.

Nanomedicine (Lond). 2019-5-3

[8]
Detection of experimental myocardium infarction in rats by MRI using heat shock protein 70 conjugated superparamagnetic iron oxide nanoparticle.

Nanomedicine. 2016-4

[9]
Transferrin-Conjugated Superparamagnetic Iron Oxide Nanoparticles as In Vivo Magnetic Resonance Imaging Contrast Agents.

J Nanosci Nanotechnol. 2020-4-1

[10]
QbD-driven development and characterization of superparamagnetic iron oxide nanoparticles (SPIONS) of a bone-targeting peptide for early detection of osteoporosis.

Int J Pharm. 2024-4-10

引用本文的文献

[1]
Magnetically Controlled Transport of Nanoparticles in Solid Tumor Tissues and Porous Media Using a Tumor-on-a-Chip Format.

Nanomaterials (Basel). 2024-12-17

本文引用的文献

[1]
Autoantibodies targeting type I interferons: Prevalence, mechanisms of induction, and association with viral disease susceptibility.

Eur J Immunol. 2023-6

[2]
Au-Coated Superparamagnetic Iron Oxide Nanoparticles for Dual Magnetic Hyperthermia and Radionuclide Therapy of Hepatocellular Carcinoma.

Int J Mol Sci. 2023-3-9

[3]
Aptamer-based CRISPR-Cas powered diagnostics of diverse biomarkers and small molecule targets.

Appl Biol Chem. 2023

[4]
MRI Tracking of Marine Proliferating Cells In Vivo Using Anti-Oct4 Antibody-Conjugated Iron Nanoparticles for Precision in Regenerative Medicine.

Biosensors (Basel). 2023-2-13

[5]
Multifunctional Iron Oxide Nanocarriers Synthesis for Drug Delivery, Diagnostic Imaging, and Biodistribution Study.

Appl Biochem Biotechnol. 2023-7

[6]
Arsenic-Loaded Biomimetic Iron Oxide Nanoparticles for Enhanced Ferroptosis-Inducing Therapy of Hepatocellular Carcinoma.

ACS Appl Mater Interfaces. 2023-2-8

[7]
A Review of Magnetic Nanoparticle-Based Surface-Enhanced Raman Scattering Substrates for Bioanalysis: Morphology, Function and Detection Application.

Biosensors (Basel). 2022-12-27

[8]
Interferon and interferon-stimulated genes in HBV treatment.

Front Immunol. 2022

[9]
Polydopamine-mediated quantity-based magnetic relaxation sensing for the rapid and sensitive detection of chloramphenicol in fish samples.

Food Res Int. 2022-12

[10]
Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment.

RSC Adv. 2022-10-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索