文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用激光烧蚀合成用于可能的热疗应用的氧化铁纳米颗粒。

Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications.

作者信息

Rivera-Chaverra María J, Restrepo-Parra Elisabeth, Acosta-Medina Carlos D, Mello Alexandre, Ospina Rogelio

机构信息

Laboratorio de FíSica del Plasma, Department Physics, Universidad Nacional de Colombia, Manizales 170003, Colombia.

Centro Brasileiro de Pesquisas Físicas, Río de Janeiro 22050-000, Brazil.

出版信息

Nanomaterials (Basel). 2020 Oct 23;10(11):2099. doi: 10.3390/nano10112099.


DOI:10.3390/nano10112099
PMID:33113964
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7690669/
Abstract

In this work, iron oxide nanoparticles produced using the laser ablation technique were studied in order to determine the characteristics of these nanoparticles as a function of the laser energy for the possible application in magnetic hyperthermia. Nanoparticles were obtained by varying the power of the laser considering values of 90, 173, 279 and 370 mJ. The morphology of these nanoparticles was determined using the dynamic light scattering (DLS) and scattering transmission electron microscopy (STEM) techniques, confirming that the size of the particles was in the order of nanometers. A great influence of the laser power on the particle size was also observed, caused by the competition between the energy and the temperature. The composition was determined by X-ray diffraction and Raman spectroscopy, showing the presence of magnetite, maghemite and hematite. The hyperthermia measurements showed that the temperature rise of the iron oxide nanoparticles was not greatly influenced by the energy change, the heating capacity of magnetic NPs is quantified by the specific absorption rate (SAR), that tends to decrease with increasing energy, which indicates a dependence of these values on the nanoparticles concentration.

摘要

在这项工作中,对使用激光烧蚀技术制备的氧化铁纳米颗粒进行了研究,以确定这些纳米颗粒的特性与激光能量的关系,以便用于磁热疗。通过改变激光功率(考虑90、173、279和370 mJ的值)获得纳米颗粒。使用动态光散射(DLS)和散射透射电子显微镜(STEM)技术确定了这些纳米颗粒的形态,证实颗粒尺寸在纳米量级。还观察到激光功率对颗粒尺寸有很大影响,这是由能量和温度之间的竞争导致的。通过X射线衍射和拉曼光谱确定了其组成,结果表明存在磁铁矿、磁赤铁矿和赤铁矿。热疗测量表明,氧化铁纳米颗粒的温度升高受能量变化的影响不大,磁性纳米颗粒的加热能力通过比吸收率(SAR)来量化,该值往往随能量增加而降低,这表明这些值与纳米颗粒浓度有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/f3ea0291c142/nanomaterials-10-02099-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/9a475266b7b9/nanomaterials-10-02099-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/30677611c3f1/nanomaterials-10-02099-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/029be251ba39/nanomaterials-10-02099-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/e776d1a5ba44/nanomaterials-10-02099-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/6eef803e8542/nanomaterials-10-02099-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/7ad013b9a8c4/nanomaterials-10-02099-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/f3ea0291c142/nanomaterials-10-02099-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/9a475266b7b9/nanomaterials-10-02099-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/30677611c3f1/nanomaterials-10-02099-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/029be251ba39/nanomaterials-10-02099-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/e776d1a5ba44/nanomaterials-10-02099-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/6eef803e8542/nanomaterials-10-02099-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/7ad013b9a8c4/nanomaterials-10-02099-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06d/7690669/f3ea0291c142/nanomaterials-10-02099-g007.jpg

相似文献

[1]
Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications.

Nanomaterials (Basel). 2020-10-23

[2]
Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic FeO Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field.

Nanomaterials (Basel). 2023-1-22

[3]
Maghemite (γ-FeO) and γ-FeO-TiO Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency.

Materials (Basel). 2021-9-30

[4]
Iron oxide-based nanoparticles with different mean sizes obtained by the laser pyrolysis: structural and magnetic properties.

J Nanosci Nanotechnol. 2010-2

[5]
Low toxic maghemite nanoparticles for theranostic applications.

Int J Nanomedicine. 2017-8-31

[6]
Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy.

Analyst. 2005-10

[7]
Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths.

Molecules. 2021-2-4

[8]
Optical and Magnetic Properties of Fe Nanoparticles Fabricated by Femtosecond Laser Ablation in Organic and Inorganic Solvents.

Chemphyschem. 2017-5-5

[9]
Modulation of the Magnetic Hyperthermia Response Using Different Superparamagnetic Iron Oxide Nanoparticle Morphologies.

Nanomaterials (Basel). 2021-3-3

[10]
Preparation and characterization of silica coated iron oxide magnetic nano-particles.

Spectrochim Acta A Mol Biomol Spectrosc. 2010-4-24

引用本文的文献

[1]
Luminescent porous silicon decorated with iron oxide nanoparticles synthesized by pulsed laser ablation.

RSC Adv. 2025-6-5

[2]
Promising biomedical applications using superparamagnetic nanoparticles.

Eur J Med Res. 2025-6-2

[3]
Emerging Trends in Silane-Modified Nanomaterial-Polymer Nanocomposites for Energy Harvesting Applications.

Polymers (Basel). 2025-5-21

[4]
Advances in the Optimization of Fe Nanoparticles: Unlocking Antifungal Properties for Biomedical Applications.

Pharmaceutics. 2024-5-10

[5]
A narrative review of the synthesis, characterization, and applications of iron oxide nanoparticles.

Discov Nano. 2023-10-10

[6]
Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Polymers (Basel). 2023-4-15

[7]
Magnetite-Based Biosensors and Molecular Logic Gates: From Magnetite Synthesis to Application.

Biosensors (Basel). 2023-2-21

[8]
Targeted delivery of paclitaxel drug using polymer-coated magnetic nanoparticles for fibrosarcoma therapy: in vitro and in vivo studies.

Sci Rep. 2023-2-23

[9]
Multifunctional Iron Oxide Nanocarriers Synthesis for Drug Delivery, Diagnostic Imaging, and Biodistribution Study.

Appl Biochem Biotechnol. 2023-7

[10]
Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects.

Nanomaterials (Basel). 2022-10-12

本文引用的文献

[1]
Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia.

Int J Hyperthermia. 2019

[2]
Optical and Magnetic Properties of Fe Nanoparticles Fabricated by Femtosecond Laser Ablation in Organic and Inorganic Solvents.

Chemphyschem. 2017-5-5

[3]
Laser Synthesis and Processing of Colloids: Fundamentals and Applications.

Chem Rev. 2017-2-13

[4]
Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid.

Mater Sci Eng C Mater Biol Appl. 2015-4-30

[5]
The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions.

Beilstein J Nanotechnol. 2014-10-15

[6]
Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy.

Int J Hyperthermia. 2013-8-22

[7]
What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?

Phys Chem Chem Phys. 2012-11-19

[8]
Dependence of gold nanoparticle production on pulse duration by laser ablation in liquid media.

Nanotechnology. 2012-3-16

[9]
Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine.

Nanoscale Res Lett. 2012-2-21

[10]
Metal-based nanoparticles and their toxicity assessment.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索