Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Biochemistry. 2023 Feb 7;62(3):695-699. doi: 10.1021/acs.biochem.2c00707. Epub 2023 Jan 26.
Aspartimides are notorious as undesired side products in solid-phase peptide synthesis and in pharmaceutical formulations. However, we have discovered several ribosomally synthesized and post-translationally modified peptides (RiPPs) in which aspartimide is installed intentionally via enzymatic activity of protein l-isoaspartyl methyltransferase (PIMT) homologues. In the case of the lasso peptide lihuanodin, the methyltransferase LihM recognizes the lassoed substrate pre-lihuanodin, specifically methylating the side chain of an l-Asp residue in the ring portion of the lasso peptide. The subsequent nucleophilic attack from the adjacent amide leads to the formation of an aspartimide. The resulting aspartimide hydrolyzes regioselectively to l-Asp in buffers above pH 7. Here we report the first Michaelis-Menten kinetic measurements of such a RiPP-associated PIMT homologue, LihM, acting on its cognate substrate pre-lihuanodin. Additionally, we measured the rate of aspartimide hydrolysis, which allowed us to deduce the kinetics of the entire reaction network. The relative magnitudes of these rates explain the accumulation and relative stability of aspartimide-containing lihuanodin. We also demonstrate that the residue C-terminal to the aspartimide controls the regioselectivity of hydrolysis and thus the threadedness of the peptide.
天冬亚氨酸是固相肽合成和药物制剂中不希望出现的副产物。然而,我们已经在几种核糖体合成和翻译后修饰的肽(RiPP)中发现,通过蛋白质 l-异天冬氨酸甲基转移酶(PIMT)同源物的酶活性,可以有意地安装天冬亚氨酸。在套索肽 lihuanodin 的情况下,甲基转移酶 LihM 识别套索化的前体 lihuanodin,特异性地上甲基化套索肽环部分的 l-Asp 残基的侧链。随后来自相邻酰胺的亲核攻击导致天冬亚氨酸的形成。所得的天冬亚氨酸在 pH 高于 7 的缓冲液中选择性地水解为 l-Asp。在这里,我们报告了第一个与 RiPP 相关的 PIMT 同源物 LihM 对其同源底物前 lihuanodin 的米氏动力学测量。此外,我们测量了天冬亚氨酸水解的速率,这使我们能够推断出整个反应网络的动力学。这些速率的相对大小解释了含天冬亚氨酸的 lihuanodin 的积累和相对稳定性。我们还证明了天冬亚氨酸 C 末端的残基控制水解的区域选择性,从而控制肽的贯穿性。