Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.
Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States.
J Am Chem Soc. 2023 Aug 30;145(34):18834-18845. doi: 10.1021/jacs.3c03991. Epub 2023 Aug 18.
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large and diverse class of natural products of ribosomal origin. In the past decade, various sophisticated machine-learning-based software packages have been established to discover novel RiPPs that do not resemble the known families. Here, we show that tailoring enzymes that cluster with various RiPP families can serve as effective bioinformatic seeds, providing a complementary approach for novel RiPP discovery. Leveraging the fact that -methyltransferases homologous to protein isoaspartyl methyltransferases (PIMTs) are associated with lasso peptide, graspetide, and lanthipeptide biosynthetic gene clusters (BGCs), we utilized a C-terminal motif unique to RiPP-associated -methyltransferases as the search query to discover a novel family of RiPPs, the imiditides. Our genome-mining algorithm reveals a total of 670 imiditide BGCs, distributed across Gram-positive bacterial genomes. In addition, we demonstrate the heterologous production of the founding member of the imiditide family, mNmaA, encoded in the genome of . In contrast to other RiPP-associated PIMTs that recognize constrained peptides as substrates, the PIMT homologue in the mNmaA BGC, NmaM, methylates a specific Asp residue on the linear precursor peptide, NmaA. The methyl ester is then turned into an aspartimide spontaneously. Substrate specificity is achieved by extensive charge-charge interactions between the precursor NmaA and the modifying enzyme NmaM suggested by both experiments and an AlphaFold model prediction. Our study shows that PIMT-mediated aspartimide formation is an emerging backbone modification strategy in the biosynthesis of multiple RiPP families.
核糖体合成和翻译后修饰肽 (RiPPs) 是一类具有核糖体起源的大型和多样化的天然产物。在过去的十年中,已经建立了各种基于复杂机器学习的软件包来发现与已知家族不相似的新型 RiPP。在这里,我们表明与各种 RiPP 家族聚类的修饰酶可以作为有效的生物信息学种子,为新型 RiPP 的发现提供了一种互补的方法。利用与蛋白异构天冬氨酸甲基转移酶 (PIMT) 同源的 -甲基转移酶与套索肽、graspetide 和蓝细菌肽生物合成基因簇 (BGC) 相关的事实,我们利用 RiPP 相关 -甲基转移酶特有的 C 端基序作为搜索查询,发现了一种新型 RiPP 家族,即咪唑肽。我们的基因组挖掘算法总共揭示了 670 个咪唑肽 BGC,分布在革兰氏阳性细菌基因组中。此外,我们还展示了编码于 基因组中的咪唑肽家族的创始成员 mNmaA 的异源生产。与其他识别约束性肽作为底物的 RiPP 相关 PIMT 不同,mNmaA BGC 中的 PIMT 同源物 NmaM 甲基化线性前体肽 NmaA 上的特定 Asp 残基。然后,甲酯自发转化为天冬酰胺亚胺。实验和 AlphaFold 模型预测都表明,通过前体 NmaA 和修饰酶 NmaM 之间的广泛电荷-电荷相互作用,实现了底物特异性。我们的研究表明,PIMT 介导的天冬酰胺亚胺形成是多种 RiPP 家族生物合成中新兴的骨架修饰策略。