Suppr超能文献

使用 Palamedes 工具箱轻松、无偏贝叶斯层次模型心理物理函数。

Easy, bias-free Bayesian hierarchical modeling of the psychometric function using the Palamedes Toolbox.

机构信息

Department of Psychology, University of Mississippi, Oxford, MS, 38677, USA.

出版信息

Behav Res Methods. 2024 Jan;56(1):485-499. doi: 10.3758/s13428-023-02061-0. Epub 2023 Jan 26.

Abstract

A hierarchical Bayesian method is proposed that can be used to fit multiple psychometric functions (PFs) simultaneously across conditions and subjects. The method incorporates the generalized linear model and allows easy reparameterization of the parameters of the PFs, for example, to constrain parameter values across conditions or to code for experimental effects (e.g., main effects and interactions in a factorial design). Simulations indicate that fitting PFs for multiple conditions and observers simultaneously using the hierarchical structure effectively eliminates bias and improves precision in parameter estimates relative to fitting PFs individually in each condition. The method is further validated by analyzing human psychophysical data obtained in an experiment investigating the effect of attention on correspondence matching in an ambiguous long-range motion display. The method converges successfully, even for experiments that use a low number of trials per subject, without the need for fine-tuning by the user and while using the default essentially uninformative priors. The latter may make the method more acceptable to those critical of applying informative priors. The method is implemented in the freely downloadable Palamedes Toolbox, which also includes routines that graphically display the fitted psychometric functions alongside the data, and derive and display posterior distributions of parameters, summary statistics, and diagnostic measures. Overall, these features make hierarchical Bayesian modeling of PFs easily available to researchers who wish to use Bayesian statistics but lack the expertise to implement these methods themselves.

摘要

提出了一种分层贝叶斯方法,可用于同时拟合条件和受试者之间的多个心理物理函数 (PFs)。该方法结合了广义线性模型,并允许对 PF 的参数进行轻松的重新参数化,例如,约束条件之间的参数值或对实验效应进行编码(例如,因子设计中的主效应和交互作用)。模拟表明,使用分层结构同时拟合多个条件和观察者的 PF 可以有效地消除偏差并提高参数估计的精度,而不是在每个条件下分别拟合 PF。该方法通过分析在一项实验中获得的人类心理物理学数据得到进一步验证,该实验研究了注意力对模糊远程运动显示中对应匹配的影响。该方法成功收敛,即使对于每个受试者使用少量试验的实验,也无需用户进行微调,同时使用默认的基本无信息先验。后者可能会使那些对应用信息先验持批评态度的人更容易接受该方法。该方法在免费下载的 Palamedes 工具箱中实现,该工具箱还包括图形显示拟合心理物理函数和数据的例程,并得出和显示参数、汇总统计数据和诊断措施的后验分布。总的来说,这些功能使得希望使用贝叶斯统计但缺乏自己实现这些方法的专业知识的研究人员可以轻松地对 PFs 进行分层贝叶斯建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验