文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于卷积神经网络的孟加拉国选茶叶疾病自动检测

Automated detection of selected tea leaf diseases in Bangladesh with convolutional neural network.

机构信息

Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.

Department of Computer Science and Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh.

出版信息

Sci Rep. 2024 Jun 18;14(1):14097. doi: 10.1038/s41598-024-62058-3.


DOI:10.1038/s41598-024-62058-3
PMID:38890367
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11189472/
Abstract

Globally, tea production and its quality fundamentally depend on tea leaves, which are susceptible to invasion by pathogenic organisms. Precise and early-stage identification of plant foliage diseases is a key element in preventing and controlling the spreading of diseases that hinder yield and quality. Image processing techniques are a sophisticated tool that is rapidly gaining traction in the agricultural sector for the detection of a wide range of diseases with excellent accuracy. This study focuses on a pragmatic approach for automatically detecting selected tea foliage diseases based on convolutional neural network (CNN). A large dataset of 3330 images has been created by collecting samples from different regions of Sylhet division, the tea capital of Bangladesh. The proposed CNN model is developed based on tea leaves affected by red rust, brown blight, grey blight, and healthy leaves. Afterward, the model's prediction was validated with laboratory tests that included microbial culture media and microscopic analysis. The accuracy of this model was found to be 96.65%. Chiefly, the proposed model was developed in the context of the Bangladesh tea industry.

摘要

从全球范围来看,茶叶的产量和质量从根本上取决于茶叶,而茶叶容易受到病原生物的侵害。准确、早期地识别植物叶片病害是防止和控制阻碍产量和质量的病害传播的关键因素。图像处理技术是农业领域中一种快速发展的工具,可用于高精度地检测各种疾病。本研究基于卷积神经网络(CNN),提出了一种实用的自动检测选定茶叶叶片病害的方法。通过从孟加拉国茶叶之都锡尔赫特地区收集样本,创建了一个包含 3330 张图像的大型数据集。该模型是基于受红锈、褐腐病、灰霉病和健康叶片影响的茶叶构建的。之后,使用包括微生物培养基和显微镜分析在内的实验室测试对模型的预测进行了验证。该模型的准确率达到了 96.65%。该模型主要是在孟加拉国茶叶产业的背景下开发的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/aa4acd0a706b/41598_2024_62058_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/5c882affbf36/41598_2024_62058_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/672487b1aba8/41598_2024_62058_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/d65dbc0d9a9e/41598_2024_62058_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/71e52e2ab62a/41598_2024_62058_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/d554cb7908c6/41598_2024_62058_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/f5214238d5b0/41598_2024_62058_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/101827d2fb92/41598_2024_62058_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/aa4acd0a706b/41598_2024_62058_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/5c882affbf36/41598_2024_62058_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/672487b1aba8/41598_2024_62058_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/d65dbc0d9a9e/41598_2024_62058_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/71e52e2ab62a/41598_2024_62058_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/d554cb7908c6/41598_2024_62058_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/f5214238d5b0/41598_2024_62058_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/101827d2fb92/41598_2024_62058_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d796/11189472/aa4acd0a706b/41598_2024_62058_Fig8_HTML.jpg

相似文献

[1]
Automated detection of selected tea leaf diseases in Bangladesh with convolutional neural network.

Sci Rep. 2024-6-18

[2]
Grey Blight Disease Detection on Tea Leaves Using Improved Deep Convolutional Neural Network.

Comput Intell Neurosci. 2023

[3]
YOLOv8-RMDA: Lightweight YOLOv8 Network for Early Detection of Small Target Diseases in Tea.

Sensors (Basel). 2024-5-1

[4]
Identification and characterization of fungi associated with blister blight lesions of tea (Camellia sinensis L. Kuntze) isolated from Meghalaya, India.

Microbiol Res. 2020-11

[5]
Detection and identification of tea leaf diseases based on AX-RetinaNet.

Sci Rep. 2022-2-9

[6]
Detection of tea leaf blight in UAV remote sensing images by integrating super-resolution and detection networks.

Environ Monit Assess. 2024-10-11

[7]
A functional molecular marker for detecting blister blight disease resistance in tea (Camellia sinensis L.).

Plant Cell Rep. 2021-2

[8]
Tea leaf disease detection and identification based on YOLOv7 (YOLO-T).

Sci Rep. 2023-4-13

[9]
Characterization of Causal Agents of a Novel Disease Inducing Brown-Black Spots on Tender Tea Leaves in China.

Plant Dis. 2017-8-2

[10]
An Improved Deep Residual Convolutional Neural Network for Plant Leaf Disease Detection.

Comput Intell Neurosci. 2022

引用本文的文献

[1]
teaLeafBD: A comprehensive image dataset to classify the diseased tea leaf to automate the leaf selection process in Bangladesh.

Data Brief. 2025-6-10

[2]
Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation.

Plants (Basel). 2024-10-1

[3]
Bayesian optimized multimodal deep hybrid learning approach for tomato leaf disease classification.

Sci Rep. 2024-9-14

本文引用的文献

[1]
How the Global Tea Industry Copes With Fungal Diseases - Challenges and Opportunities.

Plant Dis. 2021-7

[2]
A Mobile-Based Deep Learning Model for Cassava Disease Diagnosis.

Front Plant Sci. 2019-3-20

[3]
Characterization, Pathogenicity, and Phylogenetic Analyses of Colletotrichum Species Associated with Brown Blight Disease on Camellia sinensis in China.

Plant Dis. 2017-6

[4]
Differences in the Characteristics and Pathogenicity of and Isolated From the Tea Plant [ (L.) O. Kuntze].

Front Microbiol. 2018-12-11

[5]
Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning.

Phytopathology. 2017-11

[6]
Using Deep Learning for Image-Based Plant Disease Detection.

Front Plant Sci. 2016-9-22

[7]
Tea and its consumption: benefits and risks.

Crit Rev Food Sci Nutr. 2015

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索