Marmolejo-Ramos Fernando, Barrera-Causil Carlos, Kuang Shenbing, Fazlali Zeinab, Wegener Detlef, Kneib Thomas, De Bastiani Fernanda, Martinez-Flórez Guillermo
Centre for Change and Complexity in Learning, University of South Australia, Adelaide, 5000 Australia.
Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano -ITM, Medellín, 050034 Colombia.
Cogn Neurodyn. 2023 Feb;17(1):221-237. doi: 10.1007/s11571-022-09813-2. Epub 2022 May 17.
Reaction times (RTs) are an essential metric used for understanding the link between brain and behaviour. As research is reaffirming the tight coupling between neuronal and behavioural RTs, thorough statistical modelling of RT data is thus essential to enrich current theories and motivate novel findings. A statistical distribution is proposed herein that is able to model the complete RT's distribution, including location, scale and shape: the generalised-exponential-Gaussian (GEG) distribution. The GEG distribution enables shifting the attention from traditional means and standard deviations to the entire RT distribution. The mathematical properties of the GEG distribution are presented and investigated via simulations. Additionally, the GEG distribution is featured via four real-life data sets. Finally, we discuss how the proposed distribution can be used for regression analyses via generalised additive models for location, scale and shape (GAMLSS).
反应时间(RTs)是用于理解大脑与行为之间联系的一项重要指标。随着研究不断重申神经元反应时间与行为反应时间之间的紧密耦合,因此对反应时间数据进行全面的统计建模对于丰富当前理论并推动新发现至关重要。本文提出了一种统计分布,它能够对完整的反应时间分布进行建模,包括位置、尺度和形状:广义指数高斯(GEG)分布。GEG分布能够将注意力从传统的均值和标准差转移到整个反应时间分布上。通过模拟展示并研究了GEG分布的数学性质。此外,通过四个实际数据集对GEG分布进行了特征描述。最后,我们讨论了如何通过位置、尺度和形状的广义相加模型(GAMLSS)将所提出的分布用于回归分析。