Ramires Thiago G, Nakamura Luiz R, Righetto Ana J, Carvalho Renan J, Vieira Lucas A, Pereira Carlos A B
Campus Apucarana, Universidade Tecnológica Federal do Paraná, Apucarana 86812-460, Brazil.
Departamento de Informática e Estatística, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil.
Entropy (Basel). 2021 Apr 16;23(4):469. doi: 10.3390/e23040469.
This paper presents a discussion regarding regression models, especially those belonging to the location class. Our main motivation is that, with simple distributions having simple interpretations, in some cases, one gets better results than the ones obtained with overly complex distributions. For instance, with the reverse Gumbel (RG) distribution, it is possible to explain response variables by making use of the generalized additive models for location, scale, and shape (GAMLSS) framework, which allows the fitting of several parameters (characteristics) of the probabilistic distributions, like mean, mode, variance, and others. Three real data applications are used to compare several location models against the RG under the GAMLSS framework. The intention is to show that the use of a simple distribution (e.g., RG) based on a more sophisticated regression structure may be preferable than using a more complex location model.
本文提出了关于回归模型的讨论,特别是那些属于位置类别的模型。我们的主要动机是,在一些情况下,简单分布具有简单的解释,能比使用过于复杂的分布得到更好的结果。例如,对于逆耿贝尔(RG)分布,可以利用位置、尺度和形状的广义相加模型(GAMLSS)框架来解释响应变量,该框架允许拟合概率分布的几个参数(特征),如均值、众数、方差等。在GAMLSS框架下,使用三个实际数据应用来比较几个位置模型与RG模型。目的是表明,基于更复杂回归结构使用简单分布(如RG)可能比使用更复杂的位置模型更可取。