Suppr超能文献

高度复杂位置模型与广义加性模型和位置尺度模型的比较。

Comparison between Highly Complex Location Models and GAMLSS.

作者信息

Ramires Thiago G, Nakamura Luiz R, Righetto Ana J, Carvalho Renan J, Vieira Lucas A, Pereira Carlos A B

机构信息

Campus Apucarana, Universidade Tecnológica Federal do Paraná, Apucarana 86812-460, Brazil.

Departamento de Informática e Estatística, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil.

出版信息

Entropy (Basel). 2021 Apr 16;23(4):469. doi: 10.3390/e23040469.

Abstract

This paper presents a discussion regarding regression models, especially those belonging to the location class. Our main motivation is that, with simple distributions having simple interpretations, in some cases, one gets better results than the ones obtained with overly complex distributions. For instance, with the reverse Gumbel (RG) distribution, it is possible to explain response variables by making use of the generalized additive models for location, scale, and shape (GAMLSS) framework, which allows the fitting of several parameters (characteristics) of the probabilistic distributions, like mean, mode, variance, and others. Three real data applications are used to compare several location models against the RG under the GAMLSS framework. The intention is to show that the use of a simple distribution (e.g., RG) based on a more sophisticated regression structure may be preferable than using a more complex location model.

摘要

本文提出了关于回归模型的讨论,特别是那些属于位置类别的模型。我们的主要动机是,在一些情况下,简单分布具有简单的解释,能比使用过于复杂的分布得到更好的结果。例如,对于逆耿贝尔(RG)分布,可以利用位置、尺度和形状的广义相加模型(GAMLSS)框架来解释响应变量,该框架允许拟合概率分布的几个参数(特征),如均值、众数、方差等。在GAMLSS框架下,使用三个实际数据应用来比较几个位置模型与RG模型。目的是表明,基于更复杂回归结构使用简单分布(如RG)可能比使用更复杂的位置模型更可取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc8a/8073334/4cd04c225243/entropy-23-00469-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验