Cohen Asher, Naslund John A, Chang Sarah, Nagendra Srilakshmi, Bhan Anant, Rozatkar Abhijit, Thirthalli Jagadisha, Bondre Ameya, Tugnawat Deepak, Reddy Preethi V, Dutt Siddharth, Choudhary Soumya, Chand Prabhat Kumar, Patel Vikram, Keshavan Matcheri, Joshi Devayani, Mehta Urvakhsh Meherwan, Torous John
Division of Digital Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA.
Schizophrenia (Heidelb). 2023 Jan 27;9(1):6. doi: 10.1038/s41537-023-00332-5.
Smartphone technology provides us with a more convenient and less intrusive method of detecting changes in behavior and symptoms that typically precede schizophrenia relapse. To take advantage of the aforementioned, this study examines the feasibility of predicting schizophrenia relapse by identifying statistically significant anomalies in patient data gathered through mindLAMP, an open-source smartphone app. Participants, recruited in Boston, MA in the United States, and Bangalore and Bhopal in India, were invited to use mindLAMP for up to a year. The passive data (geolocation, accelerometer, and screen state), active data (surveys), and data quality metrics collected by the app were then retroactively fed into a relapse prediction model that utilizes anomaly detection. Overall, anomalies were 2.12 times more frequent in the month preceding a relapse and 2.78 times more frequent in the month preceding and following a relapse compared to intervals without relapses. The anomaly detection model incorporating passive data proved a better predictor of relapse than a naive model utilizing only survey data. These results demonstrate that relapse prediction models utilizing patient data gathered by a smartphone app can warn the clinician and patient of a potential schizophrenia relapse.
智能手机技术为我们提供了一种更便捷、干扰性更小的方法,用于检测精神分裂症复发前通常会出现的行为和症状变化。为了利用上述优势,本研究通过识别通过开源智能手机应用程序mindLAMP收集的患者数据中的统计学显著异常,来检验预测精神分裂症复发的可行性。在美国马萨诸塞州波士顿以及印度班加罗尔和博帕尔招募的参与者被邀请使用mindLAMP长达一年。然后,该应用程序收集的被动数据(地理位置、加速度计和屏幕状态)、主动数据(调查)以及数据质量指标被追溯输入到一个利用异常检测的复发预测模型中。总体而言,与无复发间隔相比,复发前一个月的异常频率高出2.12倍,复发前及复发后一个月的异常频率高出2.78倍。与仅使用调查数据的朴素模型相比,纳入被动数据的异常检测模型被证明是更好的复发预测指标。这些结果表明,利用智能手机应用程序收集的患者数据的复发预测模型可以向临床医生和患者发出精神分裂症潜在复发的警告。
Neuropsychopharmacology. 2018-2-22
Transl Psychiatry. 2021-1-11
NPJ Digit Med. 2023-12-21
Curr Epidemiol Rep. 2025
Schizophrenia (Heidelb). 2025-6-3
PLOS Digit Health. 2025-2-7
Lancet Psychiatry. 2022-4
Transl Psychiatry. 2021-1-11
Curr Psychiatry Rep. 2020-9-3