文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

COVID-19 期间使用智能手机数字表型分析预测精神分裂症复发:一项前瞻性、三中心、两国纵向研究

Relapse prediction in schizophrenia with smartphone digital phenotyping during COVID-19: a prospective, three-site, two-country, longitudinal study.

作者信息

Cohen Asher, Naslund John A, Chang Sarah, Nagendra Srilakshmi, Bhan Anant, Rozatkar Abhijit, Thirthalli Jagadisha, Bondre Ameya, Tugnawat Deepak, Reddy Preethi V, Dutt Siddharth, Choudhary Soumya, Chand Prabhat Kumar, Patel Vikram, Keshavan Matcheri, Joshi Devayani, Mehta Urvakhsh Meherwan, Torous John

机构信息

Division of Digital Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA.

出版信息

Schizophrenia (Heidelb). 2023 Jan 27;9(1):6. doi: 10.1038/s41537-023-00332-5.


DOI:10.1038/s41537-023-00332-5
PMID:36707524
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9880926/
Abstract

Smartphone technology provides us with a more convenient and less intrusive method of detecting changes in behavior and symptoms that typically precede schizophrenia relapse. To take advantage of the aforementioned, this study examines the feasibility of predicting schizophrenia relapse by identifying statistically significant anomalies in patient data gathered through mindLAMP, an open-source smartphone app. Participants, recruited in Boston, MA in the United States, and Bangalore and Bhopal in India, were invited to use mindLAMP for up to a year. The passive data (geolocation, accelerometer, and screen state), active data (surveys), and data quality metrics collected by the app were then retroactively fed into a relapse prediction model that utilizes anomaly detection. Overall, anomalies were 2.12 times more frequent in the month preceding a relapse and 2.78 times more frequent in the month preceding and following a relapse compared to intervals without relapses. The anomaly detection model incorporating passive data proved a better predictor of relapse than a naive model utilizing only survey data. These results demonstrate that relapse prediction models utilizing patient data gathered by a smartphone app can warn the clinician and patient of a potential schizophrenia relapse.

摘要

智能手机技术为我们提供了一种更便捷、干扰性更小的方法,用于检测精神分裂症复发前通常会出现的行为和症状变化。为了利用上述优势,本研究通过识别通过开源智能手机应用程序mindLAMP收集的患者数据中的统计学显著异常,来检验预测精神分裂症复发的可行性。在美国马萨诸塞州波士顿以及印度班加罗尔和博帕尔招募的参与者被邀请使用mindLAMP长达一年。然后,该应用程序收集的被动数据(地理位置、加速度计和屏幕状态)、主动数据(调查)以及数据质量指标被追溯输入到一个利用异常检测的复发预测模型中。总体而言,与无复发间隔相比,复发前一个月的异常频率高出2.12倍,复发前及复发后一个月的异常频率高出2.78倍。与仅使用调查数据的朴素模型相比,纳入被动数据的异常检测模型被证明是更好的复发预测指标。这些结果表明,利用智能手机应用程序收集的患者数据的复发预测模型可以向临床医生和患者发出精神分裂症潜在复发的警告。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e5/9883220/37d7e1c4ff51/41537_2023_332_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e5/9883220/480d74c5f487/41537_2023_332_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e5/9883220/37d7e1c4ff51/41537_2023_332_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e5/9883220/480d74c5f487/41537_2023_332_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e5/9883220/37d7e1c4ff51/41537_2023_332_Fig2_HTML.jpg

相似文献

[1]
Relapse prediction in schizophrenia with smartphone digital phenotyping during COVID-19: a prospective, three-site, two-country, longitudinal study.

Schizophrenia (Heidelb). 2023-1-27

[2]
Digital phenotyping data and anomaly detection methods to assess changes in mood and anxiety symptoms across a transdiagnostic clinical sample.

Acta Psychiatr Scand. 2025-3

[3]
Relapse prediction in schizophrenia through digital phenotyping: a pilot study.

Neuropsychopharmacology. 2018-2-22

[4]
Digital smartphone intervention to recognise and manage early warning signs in schizophrenia to prevent relapse: the EMPOWER feasibility cluster RCT.

Health Technol Assess. 2022-5

[5]
Smartphone digital phenotyping, surveys, and cognitive assessments for global mental health: Initial data and clinical correlations from an international first episode psychosis study.

Digit Health. 2022-11-8

[6]
Longitudinal symptom changes and association with home time in people with schizophrenia: An observational digital phenotyping study.

Schizophr Res. 2022-5

[7]
Digital phenotyping correlates of mobile cognitive measures in schizophrenia: A multisite global mental health feasibility trial.

PLOS Digit Health. 2024-6-28

[8]
Smartphone Health Assessment for Relapse Prevention (SHARP): a digital solution toward global mental health.

BJPsych Open. 2021-1-7

[9]
Anomaly detection to predict relapse risk in schizophrenia.

Transl Psychiatry. 2021-1-11

[10]
Classifying and clustering mood disorder patients using smartphone data from a feasibility study.

NPJ Digit Med. 2023-12-21

引用本文的文献

[1]
AI-Y: An AI Checklist for Population Ethics Across the Global Context.

Curr Epidemiol Rep. 2025

[2]
mindLAMPVis as a Co-Designed Clinician-Facing Data Visualization Portal to Integrate Clinical Observations From Digital Phenotyping in Schizophrenia: User-Centered Design Process and Pilot Implementation.

JMIR Form Res. 2025-6-10

[3]
Digital health technologies in the accelerating medicines Partnership® Schizophrenia Program.

Schizophrenia (Heidelb). 2025-6-3

[4]
Analyzing Trends in Suicidal Thoughts Among Patients With Psychosis in India: Exploratory Secondary Analysis of Smartphone Ecological Momentary Assessment Data.

JMIR Form Res. 2025-5-29

[5]
Towards clinical subtypes in schizophrenia: integrating cognitive, functional, and digital phenotyping assessments.

Mol Psychiatry. 2025-5-20

[6]
The evolving field of digital mental health: current evidence and implementation issues for smartphone apps, generative artificial intelligence, and virtual reality.

World Psychiatry. 2025-6

[7]
Uncovering Social States in Healthy and Clinical Populations Using Digital Phenotyping and Hidden Markov Models: Observational Study.

J Med Internet Res. 2025-4-28

[8]
Accuracy of machine learning methods in predicting prognosis of patients with psychotic spectrum disorders: a systematic review.

BMJ Open. 2025-2-25

[9]
Forecasting mental states in schizophrenia using digital phenotyping data.

PLOS Digit Health. 2025-2-7

[10]
Validity of a smartphone application for self-monitoring psychiatric symptoms in patients with schizophrenia.

Digit Health. 2025-1-31

本文引用的文献

[1]
Combining digital pill and smartphone data to quantify medication adherence in an observational psychiatric pilot study.

Psychiatry Res. 2022-9

[2]
The EMPOWER blended digital intervention for relapse prevention in schizophrenia: a feasibility cluster randomised controlled trial in Scotland and Australia.

Lancet Psychiatry. 2022-6

[3]
Relapse prevention in schizophrenia.

Lancet Psychiatry. 2022-4

[4]
Remote Assessment of Disease and Relapse in Major Depressive Disorder (RADAR-MDD): recruitment, retention, and data availability in a longitudinal remote measurement study.

BMC Psychiatry. 2022-2-21

[5]
Cross cultural and global uses of a digital mental health app: results of focus groups with clinicians, patients and family members in India and the United States.

Glob Ment Health (Camb). 2021-8-24

[6]
Toward a Mobile Platform for Real-world Digital Measurement of Depression: User-Centered Design, Data Quality, and Behavioral and Clinical Modeling.

JMIR Ment Health. 2021-8-10

[7]
Anomaly detection to predict relapse risk in schizophrenia.

Transl Psychiatry. 2021-1-11

[8]
Smartphone Health Assessment for Relapse Prevention (SHARP): a digital solution toward global mental health.

BJPsych Open. 2021-1-7

[9]
Digital Health Around Clinical High Risk and First-Episode Psychosis.

Curr Psychiatry Rep. 2020-9-3

[10]
Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook.

NPJ Schizophr. 2019-10-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索