文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

21 世纪 20 年代通过对南美洲、非洲和东南亚的研究得出的 COVID-19 和登革热之间的相关性。

Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s.

机构信息

Universidad Nacional de La Plata, CCT, La Plata, Argentina.

University of Illinois, Chicago, USA.

出版信息

Sci Rep. 2023 Jan 27;13(1):1525. doi: 10.1038/s41598-023-27983-9.


DOI:10.1038/s41598-023-27983-9
PMID:36707624
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9880932/
Abstract

A dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define a Correlation Model through which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data.

摘要

最近有报道称登革热疫情爆发数量急剧增加,气候变化可能会扩大疾病的地理传播范围。在这种情况下,本文展示了神经网络方法如何将登革热和 COVID-19 数据以及外部因素(如社会行为或气候变量)纳入其中,以开发预测模型,从而增进我们的认识并为卫生政策制定者提供有用的工具。通过使用具有不同社会和自然参数的神经网络,本文通过关联模型定义了一种方法,通过该方法可以发现 COVID-19 和登革热的病例数具有非常相似的趋势。然后,我们通过将其扩展到同时包含这两种疾病的长短时记忆模型 (LSTM) 来证明我们模型的相关性,并使用该模型来估算缺乏足够登革热数据的国家的登革热感染病例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/985775b66493/41598_2023_27983_Fig25_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/edaaead35925/41598_2023_27983_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/130f53a411a3/41598_2023_27983_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/ae3f7972808a/41598_2023_27983_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/b3b282290e10/41598_2023_27983_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/503dced951a7/41598_2023_27983_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/d1d55a1c831c/41598_2023_27983_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/5e3d5e093304/41598_2023_27983_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/e6da8d5c65dd/41598_2023_27983_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/dcd5f32ea6b9/41598_2023_27983_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/633332e28b89/41598_2023_27983_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/4a3b3e75e577/41598_2023_27983_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/b6f46fc0e772/41598_2023_27983_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/11b712ef7326/41598_2023_27983_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/f62748588282/41598_2023_27983_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/e7917cd188b8/41598_2023_27983_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/64558ad41abc/41598_2023_27983_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/596e6b6a6417/41598_2023_27983_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/84562bda49a5/41598_2023_27983_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/17f982490528/41598_2023_27983_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/e8ba3f9cc53a/41598_2023_27983_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/1e889f244348/41598_2023_27983_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/cfff492897f7/41598_2023_27983_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/7e97ee52e4b6/41598_2023_27983_Fig23_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/72c4c879d5ea/41598_2023_27983_Fig24_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/985775b66493/41598_2023_27983_Fig25_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/edaaead35925/41598_2023_27983_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/130f53a411a3/41598_2023_27983_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/ae3f7972808a/41598_2023_27983_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/b3b282290e10/41598_2023_27983_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/503dced951a7/41598_2023_27983_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/d1d55a1c831c/41598_2023_27983_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/5e3d5e093304/41598_2023_27983_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/e6da8d5c65dd/41598_2023_27983_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/dcd5f32ea6b9/41598_2023_27983_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/633332e28b89/41598_2023_27983_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/4a3b3e75e577/41598_2023_27983_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/b6f46fc0e772/41598_2023_27983_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/11b712ef7326/41598_2023_27983_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/f62748588282/41598_2023_27983_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/e7917cd188b8/41598_2023_27983_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/64558ad41abc/41598_2023_27983_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/596e6b6a6417/41598_2023_27983_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/84562bda49a5/41598_2023_27983_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/17f982490528/41598_2023_27983_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/e8ba3f9cc53a/41598_2023_27983_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/1e889f244348/41598_2023_27983_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/cfff492897f7/41598_2023_27983_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/7e97ee52e4b6/41598_2023_27983_Fig23_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/72c4c879d5ea/41598_2023_27983_Fig24_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/9883257/985775b66493/41598_2023_27983_Fig25_HTML.jpg

相似文献

[1]
Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s.

Sci Rep. 2023-1-27

[2]
Dengue worldwide: an overview of the current situation and the implications for Europe.

Euro Surveill. 2007-6-21

[3]
Impact of dengue/dengue hemorrhagic fever on the developing world.

Adv Virus Res. 1999

[4]
[Current status of dengue].

Med Trop (Mars). 1997

[5]
Emergence of epidemic dengue/dengue hemorrhagic fever as a public health problem in the Americas.

Infect Agents Dis. 1993-12

[6]
Prospects for a dengue virus vaccine.

Nat Rev Microbiol. 2007-7

[7]
Analysis of the spatial distribution of scientific publications regarding vector-borne diseases related to climate variability in South America.

Spat Spatiotemporal Epidemiol. 2018-8

[8]
Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic.

Int J Environ Res Public Health. 2022-8-29

[9]
Prediction of dengue fever outbreaks using climate variability and Markov chain Monte Carlo techniques in a stochastic susceptible-infected-removed model.

Sci Rep. 2022-3-31

[10]
Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance.

PLoS Negl Trop Dis. 2011-5-31

引用本文的文献

[1]
Vector-borne diseases and their role in COVID-19 dynamics and death rates: focus on India.

Folia Microbiol (Praha). 2025-8-9

本文引用的文献

[1]
Impact of the COVID-19 Pandemic on Infectious Diseases in Brazil: A Case Study on Dengue Infections.

Epidemiologia (Basel). 2022-3-2

[2]
A hybrid machine learning/deep learning COVID-19 severity predictive model from CT images and clinical data.

Sci Rep. 2022-3-14

[3]
Measuring the effects of COVID-19-related disruption on dengue transmission in southeast Asia and Latin America: a statistical modelling study.

Lancet Infect Dis. 2022-5

[4]
Dengue outbreaks in the COVID-19 era: Alarm raised for Asia.

PLoS Negl Trop Dis. 2021-10-8

[5]
Interacting Epidemics in Amazonian Brazil: Prior Dengue Infection Associated With Increased Coronavirus Disease 2019 (COVID-19) Risk in a Population-Based Cohort Study.

Clin Infect Dis. 2021-12-6

[6]
Climate and the spread of COVID-19.

Sci Rep. 2021-4-27

[7]
[Dengue at the beginning of the COVID-19 pandemic in Argentina].

Arch Argent Pediatr. 2021-4

[8]
Could thermodynamics and heat and mass transfer research produce a fundamental step advance toward and significant reduction of SARS-COV-2 spread?

Int J Heat Mass Transf. 2021-5

[9]
Temperature dependence of COVID-19 transmission.

Sci Total Environ. 2021-4-1

[10]
Previous Dengue Infection and Mortality in Coronavirus Disease 2019 (COVID-19).

Clin Infect Dis. 2021-9-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索