Universidad Nacional de La Plata, CCT, La Plata, Argentina.
University of Illinois, Chicago, USA.
Sci Rep. 2023 Jan 27;13(1):1525. doi: 10.1038/s41598-023-27983-9.
A dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define a Correlation Model through which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data.
最近有报道称登革热疫情爆发数量急剧增加,气候变化可能会扩大疾病的地理传播范围。在这种情况下,本文展示了神经网络方法如何将登革热和 COVID-19 数据以及外部因素(如社会行为或气候变量)纳入其中,以开发预测模型,从而增进我们的认识并为卫生政策制定者提供有用的工具。通过使用具有不同社会和自然参数的神经网络,本文通过关联模型定义了一种方法,通过该方法可以发现 COVID-19 和登革热的病例数具有非常相似的趋势。然后,我们通过将其扩展到同时包含这两种疾病的长短时记忆模型 (LSTM) 来证明我们模型的相关性,并使用该模型来估算缺乏足够登革热数据的国家的登革热感染病例。
Euro Surveill. 2007-6-21
Adv Virus Res. 1999
Med Trop (Mars). 1997
Infect Agents Dis. 1993-12
Nat Rev Microbiol. 2007-7
Spat Spatiotemporal Epidemiol. 2018-8
Int J Environ Res Public Health. 2022-8-29
PLoS Negl Trop Dis. 2011-5-31
Folia Microbiol (Praha). 2025-8-9
Epidemiologia (Basel). 2022-3-2
PLoS Negl Trop Dis. 2021-10-8
Sci Rep. 2021-4-27
Arch Argent Pediatr. 2021-4
Sci Total Environ. 2021-4-1
Clin Infect Dis. 2021-9-7