Departament de Física Quàntica i Astrofisíca, Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
Sci Total Environ. 2021 Apr 1;763:144390. doi: 10.1016/j.scitotenv.2020.144390. Epub 2020 Dec 13.
The recent COVID-19 pandemic follows in its early stages an almost exponential expansion, with the number of cases as a function of time reasonably well fit by N(t) ∝ e, in many countries. We analyze the rate α in different countries, starting in each country from a threshold of 30 total cases and fitting for the following 12 days, capturing thus the early exponential growth in a rather homogeneous way. We look for a link between the rate α and the average temperature T of each country, in the month of the initial epidemic growth. We analyze a base set of 42 countries, which developed the epidemic at an earlier stage, an intermediate set of 88 countries and an extended set of 125 countries, which developed the epidemic more recently. Fitting with a linear behavior α(T), we find increasing evidence in the three datasets for a slower spread at high T, at 99.66% C.L., 99.86% C.L. and 99.99995% C.L. (p-value 5⋅10, or 5σ detection) in the base, intermediate and extended dataset, respectively. The doubling time at 25 °C is 40% ~ 50% longer than at 5 °C. Moreover we analyzed the possible existence of a bias: poor countries, typically located in warm regions, might have less intense testing. By excluding countries below a given GDP per capita from the dataset, we find that this affects our conclusions only slightly and only for the extended dataset. The significance always remains high, with a p-value of about 10 - 10 or less. Our findings give hope that, for northern hemisphere countries, the growth rate should significantly decrease as a result of both warmer weather and lockdown policies. In general, policy measures should be taken to prevent a second wave, such as safe ventilation in public buildings, social distancing, use of masks, testing and tracking policies, before the arrival of the next cold season.
在早期,最近的 COVID-19 大流行呈指数级扩张,许多国家的病例数随时间的变化可以很好地用 N(t)∝e 来拟合。我们分析了不同国家的增长率α,从每个国家的 30 例总病例数开始,拟合接下来的 12 天,以相当均匀的方式捕捉早期的指数增长。我们寻找了增长率α与每个国家初始疫情增长月份的平均温度 T 之间的联系。我们分析了一个早期爆发疫情的 42 个国家的基础数据集、一个 88 个国家的中间数据集和一个最近爆发疫情的 125 个国家的扩展数据集。通过线性拟合 α(T),我们在三个数据集中都发现了越来越多的证据,表明在高 T 下传播速度较慢,置信度分别为 99.66%、99.86%和 99.99995%(基础、中间和扩展数据集的 p 值分别为 5⋅10 或 5σ 检测)。在 25°C 时,倍增时间比 5°C 时长 40%~50%。此外,我们还分析了可能存在的偏差:位于温暖地区的贫穷国家,检测力度可能较低。从数据集中排除人均 GDP 低于某一值的国家后,我们发现这仅对扩展数据集有轻微影响,且仅对我们的结论有轻微影响。这种影响始终是显著的,p 值约为 10-10 或更小。我们的发现表明,随着天气变暖以及封锁政策的实施,北半球国家的增长率应该会显著下降。一般来说,应该在下一个寒冷季节到来之前,采取安全通风、保持社交距离、使用口罩、检测和跟踪等政策,以防止第二波疫情的发生。