Suppr超能文献

通过协作方法在神经退行性疾病中识别有临床意义的生物标志物:NeuroToolKit。

Identifying clinically useful biomarkers in neurodegenerative disease through a collaborative approach: the NeuroToolKit.

机构信息

University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.

Geriatric Research Education and Clinical Center of the William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.

出版信息

Alzheimers Res Ther. 2023 Jan 28;15(1):25. doi: 10.1186/s13195-023-01168-y.

Abstract

BACKGROUND

Alzheimer's disease (AD) is a complex and heterogeneous disease, which requires reliable biomarkers for diagnosis and monitoring disease activity. Preanalytical protocol and technical variability associated with biomarker immunoassays makes comparability of biomarker data across multiple cohorts difficult. This study aimed to compare cerebrospinal fluid (CSF) biomarker results across independent cohorts, including participants spanning the AD continuum.

METHODS

Measured on the NeuroToolKit (NTK) prototype panel of immunoassays, 12 CSF biomarkers were evaluated from three cohorts (ALFA+, Wisconsin, and Abby/Blaze). A correction factor was applied to biomarkers found to be affected by preanalytical procedures (amyloid-β, amyloid-β, and alpha-synuclein), and results between cohorts for each disease stage were compared. The relationship between CSF biomarker concentration and cognitive scores was evaluated.

RESULTS

Biomarker distributions were comparable across cohorts following correction. Correlations of biomarker values were consistent across cohorts, regardless of disease stage. Disease stage differentiation was highest for neurofilament light (NfL), phosphorylated tau, and total tau, regardless of the cohort. Correlation between biomarker concentration and cognitive scores was comparable across cohorts, and strongest for NfL, chitinase-3-like protein-1 (YKL40), and glial fibrillary acidic protein.

DISCUSSION

The precision of the NTK enables merging of biomarker datasets, after correction for preanalytical confounders. Assessment of multiple cohorts is crucial to increase power in future studies into AD pathogenesis.

摘要

背景

阿尔茨海默病(AD)是一种复杂且异质性的疾病,需要可靠的生物标志物来进行诊断和监测疾病活动。与生物标志物免疫测定相关的分析前方案和技术变异性使得多个队列之间的生物标志物数据难以进行比较。本研究旨在比较包括跨越 AD 连续体的参与者在内的多个独立队列中的脑脊液(CSF)生物标志物结果。

方法

使用神经工具包(NTK)原型面板上的免疫测定法测量了 12 种 CSF 生物标志物,这些生物标志物来自三个队列(ALFA+、威斯康星州和 Abby/Blaze)。对受分析前程序影响的生物标志物(淀粉样蛋白-β、总淀粉样蛋白-β 和α-突触核蛋白)应用校正因子,并比较每个疾病阶段的队列之间的结果。评估了 CSF 生物标志物浓度与认知评分之间的关系。

结果

经过校正后,各队列之间的生物标志物分布具有可比性。无论疾病阶段如何,各队列之间的生物标志物值相关性都是一致的。无论队列如何,神经丝轻链(NfL)、磷酸化 tau 和总 tau 的疾病阶段分化最高。生物标志物浓度与认知评分之间的相关性在各队列中具有可比性,且与 NfL、几丁质酶-3 样蛋白-1(YKL40)和神经胶质纤维酸性蛋白相关性最强。

讨论

NTK 的精度能够在针对分析前混杂因素进行校正后合并生物标志物数据集。评估多个队列对于增加未来 AD 发病机制研究的功效至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b62b/9883877/f2b617d11dfb/13195_2023_1168_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验