Suppr超能文献

高分辨率建模在特大城市中对空气污染物标准及相关空气质量指数的研究。

High-resolution modeling for criteria air pollutants and the associated air quality index in a metropolitan city.

机构信息

Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.

出版信息

Environ Int. 2023 Feb;172:107752. doi: 10.1016/j.envint.2023.107752. Epub 2023 Jan 13.

Abstract

The Air Quality Index (AQI), which jointly accounts for levels of criteria air pollutants relative to their guidelines, is largely reported at the city level. Little is known about the spatial patterns of the AQI in terms of the magnitude, temporal variability, and predominant air pollutant contributions at the hyperlocal scale within a city. To fill this research gap, we developed spatiotemporal models for each criteria air pollutant based on an advanced geostatistical framework and estimated daily AQI levels at 100-meter resolution in a metropolitan city in 2019. The model prediction ability (cross-validation, CV, Coefficient of determination, R, and root mean square error, RMSE) ranged from 0.43 and 1.86 µg/m for sulfur dioxide (SO) to 0.92 and 6.25 µg/m for fine particulate matter (PM) across the six air pollutants, leading to good performance in the subsequent AQI estimations (CV R = 0.86, RMSE = 10.05). The AQI varies substantially over space at a fine scale and differs from the distributions of individual air pollutants. The unhealthy air quality (AQI > 100 over 75 days) spatial pattern was dominated by excessive ground-level ozone exposure in a large area. Our research provides a useful tool for accurately estimating AQI spatiotemporal variations for population health studies.

摘要

空气质量指数(AQI)综合考虑了空气污染物相对于其指导值的水平,主要在城市一级进行报告。在城市内部的超局部尺度上,关于 AQI 的幅度、时间可变性以及主要空气污染物的贡献,其空间模式知之甚少。为了填补这一研究空白,我们基于先进的地统计学框架,为每种空气污染物开发了时空模型,并在 2019 年对一个大都市区的 100 米分辨率的每日 AQI 水平进行了估计。模型预测能力(交叉验证,CV,决定系数,R 和均方根误差,RMSE)在二氧化硫(SO)的 0.43 到 1.86µg/m 和细颗粒物(PM)的 0.92 到 6.25µg/m 之间,这导致了随后的 AQI 估计的良好性能(CV R=0.86,RMSE=10.05)。AQI 在小尺度上的空间变化很大,与个别空气污染物的分布不同。不健康的空气质量(AQI>100 超过 75 天)的空间模式主要是由于大面积的地面臭氧暴露过多。我们的研究为准确估计人口健康研究中的 AQI 时空变化提供了有用的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验