Suppr超能文献

使用飞行时间相机评估慢性呼吸系统疾病患者的呼吸频率和胸腹部深度。

The use of time-of-flight camera to assess respiratory rates and thoracoabdominal depths in patients with chronic respiratory disease.

机构信息

Department of Pneumology, Erasme Hospital, Brussels, Belgium.

Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, Schoenau am Koenigssee, Germany.

出版信息

Clin Respir J. 2023 Mar;17(3):176-186. doi: 10.1111/crj.13581. Epub 2023 Jan 29.

Abstract

INTRODUCTION

Over the last 5 years, the analysis of respiratory patterns presents a growing usage in clinical and research purposes, but there is still currently a lack of easy-to-use and affordable devices to perform such kind of evaluation.

OBJECTIVES

The aim of this study is to validate a new specifically developed method, based on Kinect sensor, to assess respiratory patterns against spirometry under various conditions.

METHODS

One hundred and one participants took parts in one of the three validations studies. Twenty-five chronic respiratory disease patients (14 with chronic obstructive pulmonary disease (COPD) [65 ± 10 years old, FEV  = 37 (15% predicted value), VC = 62 (20% predicted value)], and 11 with lung fibrosis (LF) [64 ± 14 years old, FEV  = 55 (19% predicted value), VC = 62 (20% predicted value)]) and 76 healthy controls (HC) were recruited. The correlations between the signal of the Kinect (depth and respiratory rate) and the spirometer (tidal volume and respiratory rate) were computed in part 1. We then included 66 HC to test the ability of the system to detect modifications of respiratory patterns induced by various conditions known to modify respiratory pattern (cognitive load, inspiratory load and combination) in parts 2 and 3.

RESULTS

There is a strong correlation between the depth recorded by the Kinect and the tidal volume recorded by the spirometer: r = 0.973 for COPD patients, r = 0.989 for LF patients and r = 0.984 for HC. The Kinect is able to detect changes in breathing patterns induced by different respiratory disturbance conditions, gender and oral task.

CONCLUSIONS

Measurements performed with the Kinect sensors are highly correlated with the spirometer in HC and patients with COPD and LF. Kinect is also able to assess respiratory patterns under various loads and disturbances. This method is affordable, easy to use, fully automated and could be used in the current clinical context. Respiratory patterns are important to assess in daily clinics. However, there is currently no affordable and easy-to-use tool to evaluate these parameters in clinics. We validated a new system to assess respiratory patterns using the Kinect sensor in patients with chronic respiratory diseases.

摘要

简介

在过去的 5 年中,呼吸模式的分析在临床和研究目的中越来越普及,但目前仍然缺乏易于使用和负担得起的设备来进行这种评估。

目的

本研究的目的是验证一种新的专门开发的方法,该方法基于 Kinect 传感器,以在各种条件下评估呼吸模式与肺活量计的相关性。

方法

101 名参与者参加了三项验证研究中的一项。25 名慢性呼吸系统疾病患者(14 名慢性阻塞性肺疾病(COPD)患者[65±10 岁,FEV 为 37(预计值的 15%),VC 为 62(预计值的 20%)],11 名肺纤维化(LF)患者[64±14 岁,FEV 为 55(预计值的 19%),VC 为 62(预计值的 20%)])和 76 名健康对照(HC)被招募。在第 1 部分中,计算了 Kinect(深度和呼吸率)信号与肺活量计(潮气量和呼吸率)之间的相关性。然后,我们纳入了 66 名 HC,以在第 2 和第 3 部分中测试该系统检测各种已知会改变呼吸模式的条件(认知负荷、吸气负荷和组合)引起的呼吸模式变化的能力。

结果

Kinect 记录的深度与肺活量计记录的潮气量之间存在很强的相关性:COPD 患者的 r 值为 0.973,LF 患者的 r 值为 0.989,HC 的 r 值为 0.984。Kinect 能够检测到不同呼吸干扰条件、性别和口腔任务引起的呼吸模式变化。

结论

在 HC 和 COPD 和 LF 患者中,Kinect 传感器的测量结果与肺活量计高度相关。Kinect 还能够在各种负荷和干扰下评估呼吸模式。这种方法经济实惠、易于使用、完全自动化,可用于当前的临床环境。呼吸模式对于日常临床评估很重要。但是,目前没有负担得起且易于使用的工具来在临床环境中评估这些参数。我们使用 Kinect 传感器验证了一种新的系统来评估慢性呼吸系统疾病患者的呼吸模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d3/9978902/d407627fba86/CRJ-17-176-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验