School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
Center for Nanoscience and Technology, Istituto Italiano di Teconologia, Milano, 20133, Italy.
Adv Sci (Weinh). 2023 Mar;10(8):e2205007. doi: 10.1002/advs.202205007. Epub 2023 Jan 29.
Recent studies have shown that bacterial membrane potential is dynamic and plays signaling roles. Yet, little is still known about the mechanisms of membrane potential dynamics regulation-owing to a scarcity of appropriate research tools. Optical modulation of bacterial membrane potential could fill this gap and provide a new approach for studying and controlling bacterial physiology and electrical signaling. Here, the authors show that a membrane-targeted azobenzene (Ziapin2) can be used to photo-modulate the membrane potential in cells of the Gram-positive bacterium Bacillus subtilis. It is found that upon exposure to blue-green light (λ = 470 nm), isomerization of Ziapin2 in the bacteria membrane induces hyperpolarization of the potential. To investigate the origin of this phenomenon, ion-channel-deletion strains and ion channel blockers are examined. The authors found that in presence of the chloride channel blocker idanyloxyacetic acid-94 (IAA-94) or in absence of KtrAB potassium transporter, the hyperpolarization response is attenuated. These results reveal that the Ziapin2 isomerization can induce ion channel opening in the bacterial membrane and suggest that Ziapin2 can be used for studying and controlling bacterial electrical signaling. This new optical tool could contribute to better understand various microbial phenomena, such as biofilm electric signaling and antimicrobial resistance.
最近的研究表明,细菌膜电位是动态的,并发挥信号作用。然而,由于缺乏适当的研究工具,人们对膜电位动力学调节的机制仍然知之甚少。细菌膜电位的光调节可以填补这一空白,并为研究和控制细菌生理学和电信号提供一种新方法。在这里,作者表明,一种靶向细菌膜的偶氮苯(Ziapin2)可用于光调节革兰氏阳性菌枯草芽孢杆菌细胞的膜电位。研究发现,当暴露于蓝绿光(λ=470nm)时,细菌膜中 Ziapin2 的异构化会导致电位超极化。为了研究这一现象的起源,作者研究了离子通道缺失菌株和离子通道阻断剂。作者发现,在存在氯通道阻断剂 idanyloxyacetic acid-94(IAA-94)或不存在 KtrAB 钾转运体的情况下,超极化反应会减弱。这些结果表明,Ziapin2 的异构化可以诱导细菌膜中离子通道的打开,并表明 Ziapin2 可用于研究和控制细菌电信号。这种新的光学工具可能有助于更好地理解各种微生物现象,例如生物膜电信号和抗微生物耐药性。