Suppr超能文献

人工智能在心电图检测低射血分数中的外部验证和亚组分析的重要性。

Importance of external validation and subgroup analysis of artificial intelligence in the detection of low ejection fraction from electrocardiograms.

作者信息

Yagi Ryuichiro, Goto Shinichi, Katsumata Yoshinori, MacRae Calum A, Deo Rahul C

机构信息

One Brave Idea and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

Eur Heart J Digit Health. 2022 Nov 2;3(4):654-657. doi: 10.1093/ehjdh/ztac065. eCollection 2022 Dec.

Abstract

AIM

Left ventricular systolic dysfunction (LVSD) carries an increased risk for overt heart failure and mortality, yet treatable to mitigate disease progression. An artificial intelligence (AI)-enabled 12-lead electrocardiogram (ECG) model demonstrated promise in LVSD screening, but the performance dropped unexpectedly in external validation. We thus sought to train models for LVSD detection and investigated their performance across multiple institutions and across a broader set of patient strata.

METHODS AND RESULTS

ECGs taken within 14 days of an echocardiogram were obtained from four academic hospitals (three in the United States and one in Japan). Four AI models were trained to detect patients with ejection fraction (EF) <40% using ECGs from each of the four institutions. All the models were then evaluated on the held-out test data set from the same institution and data from the three external institutions. Subgroup analyses stratified by patient characteristics and common ECG abnormalities were performed. A total of 221 846 ECGs were identified from the 4 institutions. While the Brigham and Women's Hospital (BWH)-trained and Keio-trained models yielded similar accuracy on their internal test data [area under the receiver operating curve (AUROC) 0.913 and 0.914, respectively], external validity was worse for the Keio-trained model (AUROC: 0.905-0.915 for BWH trained and 0.849-0.877 for Keio-trained model). Although ECG abnormalities including atrial fibrillation, left bundle branch block, and paced rhythm-reduced detection, the models performed robustly across patient characteristics and other ECG features.

CONCLUSION

While using the same model architecture, different data sets produced models with different performances for detecting low-EF highlighting the importance of external validation and extensive stratification analysis.

摘要

目的

左心室收缩功能障碍(LVSD)会增加明显心力衰竭和死亡风险,但可通过治疗减轻疾病进展。一种基于人工智能(AI)的12导联心电图(ECG)模型在LVSD筛查中显示出前景,但在外部验证中性能意外下降。因此,我们试图训练LVSD检测模型,并研究它们在多个机构和更广泛患者分层中的性能。

方法和结果

从四家学术医院(美国三家,日本一家)获取在超声心动图检查14天内记录的心电图。使用来自这四个机构各自的心电图训练四个AI模型,以检测射血分数(EF)<40%的患者。然后在来自同一机构的保留测试数据集以及来自三个外部机构的数据上对所有模型进行评估。按患者特征和常见心电图异常进行亚组分析。从这4个机构共识别出221846份心电图。虽然布莱根妇女医院(BWH)训练的模型和庆应义塾大学训练的模型在其内部测试数据上具有相似的准确性[受试者操作特征曲线下面积(AUROC)分别为0.913和0.914],但庆应义塾大学训练的模型外部有效性较差(BWH训练的模型AUROC为0.905 - 0.915,庆应义塾大学训练的模型为0.849 - 0.877)。尽管包括心房颤动、左束支传导阻滞和起搏心律在内的心电图异常降低了检测率,但这些模型在不同患者特征和其他心电图特征方面表现稳健。

结论

虽然使用相同的模型架构,但不同数据集产生的检测低EF模型性能不同,这突出了外部验证和广泛分层分析的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f3/9779862/1f878adb2217/ztac065ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验