Huang Meng, Ma Jiangtao, Zhang Junpeng
Department of Automation, Xiamen University, Xiamen, China.
Department of Computer Science, University of Tsukuba, Tsukuba, Japan.
Front Mol Neurosci. 2023 Jan 13;15:1037565. doi: 10.3389/fnmol.2022.1037565. eCollection 2022.
Noncoding RNAs (ncRNAs) occupy ~98% of the transcriptome in human, and are usually not translated into proteins. Among ncRNAs, long non-coding RNAs (lncRNAs, >200 nucleotides) are important regulators to modulate gene expression, and are involved in many biological processes (e.g., cell development). To study lncRNA regulation, many computational approaches or tools have been proposed by using bulk transcriptomics data. Nevertheless, previous bulk data-driven methods are mostly limited to explore the lncRNA regulation regarding all of cells, instead of the lncRNA regulation specific to cell developmental stages. Fortunately, recent advance in single-cell sequencing data has provided a way to investigate cell developmental stage-specific lncRNA regulation. In this work, we present a novel computational method, CDSlncR (Cell Developmental Stage-specific lncRNA regulation), which combines putative lncRNA-target binding information with single-cell transcriptomics data to infer cell developmental stage-specific lncRNA regulation. For each cell developmental stage, CDSlncR constructs a cell developmental stage-specific lncRNA regulatory network in the cell developmental stage. To illustrate the effectiveness of CDSlncR, we apply CDSlncR into single-cell transcriptomics data of the developing human neocortex for exploring lncRNA regulation across different human neocortex developmental stages. Network analysis shows that the lncRNA regulation is unique in each developmental stage of human neocortex. As a case study, we also perform particular analysis on the cell developmental stage-specific lncRNA regulation related to 18 known lncRNA biomarkers in autism spectrum disorder. Finally, the comparison result indicates that CDSlncR is an effective method for predicting cell developmental stage-specific lncRNA targets. CDSlncR is available at https://github.com/linxi159/CDSlncR.
非编码RNA(ncRNAs)占人类转录组的约98%,通常不翻译成蛋白质。在ncRNAs中,长链非编码RNA(lncRNAs,>200个核苷酸)是调节基因表达的重要调控因子,并参与许多生物学过程(如细胞发育)。为了研究lncRNA调控,已经提出了许多利用批量转录组学数据的计算方法或工具。然而,以前基于批量数据驱动的方法大多局限于探索关于所有细胞的lncRNA调控,而不是特定于细胞发育阶段的lncRNA调控。幸运的是,单细胞测序数据的最新进展为研究细胞发育阶段特异性lncRNA调控提供了一种方法。在这项工作中,我们提出了一种新的计算方法CDSlncR(细胞发育阶段特异性lncRNA调控),它将假定的lncRNA-靶标结合信息与单细胞转录组学数据相结合,以推断细胞发育阶段特异性lncRNA调控。对于每个细胞发育阶段,CDSlncR在细胞发育阶段构建一个细胞发育阶段特异性lncRNA调控网络。为了说明CDSlncR的有效性,我们将CDSlncR应用于发育中的人类新皮层的单细胞转录组学数据,以探索不同人类新皮层发育阶段的lncRNA调控。网络分析表明,lncRNA调控在人类新皮层的每个发育阶段都是独特的。作为一个案例研究,我们还对与自闭症谱系障碍中18种已知lncRNA生物标志物相关的细胞发育阶段特异性lncRNA调控进行了具体分析。最后,比较结果表明CDSlncR是预测细胞发育阶段特异性lncRNA靶标的有效方法。CDSlncR可在https://github.com/linxi159/CDSlncR上获取。