Sashittal Palash, Zhang Haochen, Iacobuzio-Donahue Christine A, Raphael Benjamin J
Department of Computer Science, Princeton University, NJ, USA.
Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, NY, USA.
bioRxiv. 2023 Jan 6:2023.01.05.522408. doi: 10.1101/2023.01.05.522408.
Tumors consist of subpopulations of cells that harbor distinct collections of somatic mutations. These mutations range in scale from single nucleotide variants (SNVs) to large-scale copy-number aberrations (CNAs). While many approaches infer tumor phylogenies using SNVs as phylogenetic markers, CNAs that overlap SNVs may lead to erroneous phylogenetic inference. Specifically, an SNV may be lost in a cell due to a deletion of the genomic segment containing the SNV. Unfortunately, no current single-cell DNA sequencing (scDNA-seq) technology produces accurate measurements of both SNVs and CNAs. For instance, recent scDNA-seq technologies, such as Mission Bio Tapestri, measure SNVs with high fidelity in individual cells, but yield much less reliable measurements of CNAs. We introduce a new evolutionary model, the , that uses SNVs as phylogenetic markers and partial information about CNAs in the form of clustering of cells with similar copy-number profiles. This copy-number clustering constrains where loss of SNVs can occur in the phylogeny. We develop ConDoR (Constrained Dollo Reconstruction), an algorithm to infer tumor phylogenies from targeted scDNA-seq data using the constrained -Dollo model. We show that ConDoR outperforms existing methods on simulated data. We use ConDoR to analyze a new multi-region targeted scDNA-seq dataset of 2153 cells from a pancreatic ductal adenocarcinoma (PDAC) tumor and produce a more plausible phylogeny compared to existing methods that conforms to histological results for the tumor from a previous study. We also analyze a metastatic colorectal cancer dataset, deriving a more parsimonious phylogeny than previously published analyses and with a simpler monoclonal origin of metastasis compared to the original study.
Software is available at https://github.com/raphael-group/constrained-Dollo.
肿瘤由具有不同体细胞突变集合的细胞亚群组成。这些突变的规模从单核苷酸变异(SNV)到大规模拷贝数畸变(CNA)不等。虽然许多方法使用SNV作为系统发育标记来推断肿瘤系统发育,但与SNV重叠的CNA可能导致错误的系统发育推断。具体而言,由于包含该SNV的基因组片段缺失,SNV可能在细胞中丢失。不幸的是,目前没有单细胞DNA测序(scDNA-seq)技术能够同时准确测量SNV和CNA。例如,最近的scDNA-seq技术,如Mission Bio Tapestri,在单个细胞中能高保真地测量SNV,但对CNA的测量可靠性要低得多。我们引入了一种新的进化模型,即,该模型使用SNV作为系统发育标记,并以具有相似拷贝数谱的细胞聚类形式利用关于CNA的部分信息。这种拷贝数聚类限制了系统发育中SNV丢失可能发生的位置。我们开发了ConDoR(Constrained Dollo Reconstruction),一种使用约束 -Dollo模型从靶向scDNA-seq数据推断肿瘤系统发育的算法。我们表明,在模拟数据上ConDoR优于现有方法。我们使用ConDoR分析了一个来自胰腺导管腺癌(PDAC)肿瘤的2153个细胞的新的多区域靶向scDNA-seq数据集,与先前符合该肿瘤组织学结果的现有方法相比,产生了更合理的系统发育。我们还分析了一个转移性结直肠癌数据集,得出了比先前发表的分析更简约的系统发育,并且与原始研究相比,转移的单克隆起源更简单。