Sashittal Palash, Zaccaria Simone, El-Kebir Mohammed
Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK.
Algorithms Mol Biol. 2022 Mar 14;17(1):3. doi: 10.1186/s13015-022-00209-9.
Every tumor is composed of heterogeneous clones, each corresponding to a distinct subpopulation of cells that accumulated different types of somatic mutations, ranging from single-nucleotide variants (SNVs) to copy-number aberrations (CNAs). As the analysis of this intra-tumor heterogeneity has important clinical applications, several computational methods have been introduced to identify clones from DNA sequencing data. However, due to technological and methodological limitations, current analyses are restricted to identifying tumor clones only based on either SNVs or CNAs, preventing a comprehensive characterization of a tumor's clonal composition.
To overcome these challenges, we formulate the identification of clones in terms of both SNVs and CNAs as a integration problem while accounting for uncertainty in the input SNV and CNA proportions. We thus characterize the computational complexity of this problem and we introduce PACTION (PArsimonious Clone Tree integratION), an algorithm that solves the problem using a mixed integer linear programming formulation. On simulated data, we show that tumor clones can be identified reliably, especially when further taking into account the ancestral relationships that can be inferred from the input SNVs and CNAs. On 49 tumor samples from 10 prostate cancer patients, our integration approach provides a higher resolution view of tumor evolution than previous studies.
PACTION is an accurate and fast method that reconstructs clonal architecture of cancer tumors by integrating SNV and CNA clones inferred using existing methods.
每个肿瘤都由异质性克隆组成,每个克隆对应于一个不同的细胞亚群,这些细胞积累了不同类型的体细胞突变,从单核苷酸变异(SNV)到拷贝数畸变(CNA)。由于对肿瘤内异质性的分析具有重要的临床应用价值,因此已经引入了几种计算方法来从DNA测序数据中识别克隆。然而,由于技术和方法的局限性,目前的分析仅限于仅基于SNV或CNA来识别肿瘤克隆,从而无法全面表征肿瘤的克隆组成。
为了克服这些挑战,我们将基于SNV和CNA两者的克隆识别问题表述为一个整合问题,同时考虑输入的SNV和CNA比例中的不确定性。因此,我们表征了这个问题的计算复杂性,并引入了PACTION(简约克隆树整合)算法,该算法使用混合整数线性规划公式来解决这个问题。在模拟数据上,我们表明可以可靠地识别肿瘤克隆,特别是在进一步考虑可以从输入的SNV和CNA推断出的祖先关系时。在来自10名前列腺癌患者的49个肿瘤样本上,我们的整合方法比以前的研究提供了更高分辨率的肿瘤进化视图。
PACTION是一种准确且快速的方法,通过整合使用现有方法推断出的SNV和CNA克隆来重建癌症肿瘤的克隆结构。