Suppr超能文献

用于分解多重标记荧光图像的盲源分离技术。

Blind source separation techniques for the decomposition of multiply labeled fluorescence images.

作者信息

Neher Richard A, Mitkovski Miso, Kirchhoff Frank, Neher Erwin, Theis Fabian J, Zeug André

机构信息

Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California, USA.

出版信息

Biophys J. 2009 May 6;96(9):3791-800. doi: 10.1016/j.bpj.2008.10.068.

Abstract

Methods of blind source separation are used in many contexts to separate composite data sets according to their sources. Multiply labeled fluorescence microscopy images represent such sets, in which the sources are the individual labels. Their distributions are the quantities of interest and have to be extracted from the images. This is often challenging, since the recorded emission spectra of fluorescent dyes are environment- and instrument-specific. We have developed a nonnegative matrix factorization (NMF) algorithm to detect and separate spectrally distinct components of multiply labeled fluorescence images. It operates on spectrally resolved images and delivers both the emission spectra of the identified components and images of their abundance. We tested the proposed method using biological samples labeled with up to four spectrally overlapping fluorescent labels. In most cases, NMF accurately decomposed the images into contributions of individual dyes. However, the solutions are not unique when spectra overlap strongly or when images are diffuse in their structure. To arrive at satisfactory results in such cases, we extended NMF to incorporate preexisting qualitative knowledge about spectra and label distributions. We show how data acquired through excitations at two or three different wavelengths can be integrated and that multiple excitations greatly facilitate the decomposition. By allowing reliable decomposition in cases where the spectra of the individual labels are not known or are known only inaccurately, the proposed algorithms greatly extend the range of questions that can be addressed with quantitative microscopy.

摘要

盲源分离方法在许多情况下被用于根据数据源分离复合数据集。多重标记荧光显微镜图像就代表了这样的数据集,其中数据源就是各个标记。它们的分布是人们感兴趣的量,必须从图像中提取出来。这通常具有挑战性,因为荧光染料的记录发射光谱是特定于环境和仪器的。我们开发了一种非负矩阵分解(NMF)算法来检测和分离多重标记荧光图像中光谱上不同的成分。它对光谱分辨图像进行操作,并给出已识别成分的发射光谱及其丰度图像。我们使用标记有多达四种光谱重叠荧光标记的生物样本测试了所提出的方法。在大多数情况下,NMF能准确地将图像分解为各个染料的贡献。然而,当光谱强烈重叠或图像结构模糊时,解决方案并非唯一。为了在这种情况下获得令人满意的结果,我们扩展了NMF以纳入关于光谱和标记分布的已有定性知识。我们展示了如何整合通过在两个或三个不同波长激发获取的数据,并且多次激发极大地促进了分解。通过允许在各个标记的光谱未知或仅不准确知晓的情况下进行可靠分解,所提出的算法极大地扩展了可以用定量显微镜解决的问题范围。

相似文献

8
Multiplexed Spectral Imaging of 120 Different Fluorescent Labels.120种不同荧光标记的多重光谱成像
PLoS One. 2016 Jul 8;11(7):e0158495. doi: 10.1371/journal.pone.0158495. eCollection 2016.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验