Suppr超能文献

同步中间神经元标记揭示了皮质中小清蛋白、生长抑素和锥体神经元之间的群体水平相互作用。

Simultaneous interneuron labeling reveals population-level interactions among parvalbumin, somatostatin, and pyramidal neurons in cortex.

作者信息

Potter Christian, Bassi Constanza, Runyan Caroline A

机构信息

Department of Neuroscience.

Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA.

出版信息

bioRxiv. 2024 Feb 2:2023.01.09.523298. doi: 10.1101/2023.01.09.523298.

Abstract

Cortical interneurons shape network activity in cell type-specific ways, and are also influenced by interactions with other cell types. These specific cell-type interactions are understudied, as transgenic labeling methods typically restrict labeling to one neuron type at a time. Although recent methods have enabled post-hoc identification of cell types, these are not available to many labs. Here, we present a method to distinguish between two red fluorophores , which allowed imaging of activity in somatostatin (SOM), parvalbumin (PV), and putative pyramidal neurons (PYR) in mouse association cortex. We compared population events of elevated activity and observed that the PYR network state corresponded to the ratio between mean SOM and PV neuron activity, demonstrating the importance of simultaneous labeling to explain dynamics. These results extend previous findings in sensory cortex, as activity became sparser and less correlated when the ratio between SOM and PV activity was high.

摘要

皮质中间神经元以细胞类型特异性的方式塑造网络活动,并且也受到与其他细胞类型相互作用的影响。这些特定的细胞类型相互作用尚未得到充分研究,因为转基因标记方法通常一次只能将标记限制在一种神经元类型上。尽管最近的方法能够对细胞类型进行事后鉴定,但许多实验室无法使用这些方法。在这里,我们提出了一种区分两种红色荧光团的方法,该方法能够对小鼠联合皮层中的生长抑素(SOM)、小白蛋白(PV)和假定的锥体神经元(PYR)的活动进行成像。我们比较了活动增强的群体事件,观察到PYR网络状态与平均SOM和PV神经元活动之间的比率相对应,这表明同时标记对于解释动力学的重要性。这些结果扩展了先前在感觉皮层中的发现,因为当SOM和PV活动之间的比率较高时,活动变得更加稀疏且相关性更低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ece0/10851981/51f9d9cfe6e9/nihpp-2023.01.09.523298v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验