Suppr超能文献

空间感知深度学习揭示了编码不同肾癌状态的肿瘤异质性模式。

Spatially aware deep learning reveals tumor heterogeneity patterns that encode distinct kidney cancer states.

作者信息

Nyman Jackson, Denize Thomas, Bakouny Ziad, Labaki Chris, Titchen Breanna M, Bi Kevin, Hari Surya Narayanan, Rosenthal Jacob, Mehta Nicita, Jiang Bowen, Sharma Bijaya, Felt Kristen, Umeton Renato, Braun David A, Rodig Scott, Choueiri Toni K, Signoretti Sabina, Van Allen Eliezer M

机构信息

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

Harvard Graduate Program in Systems Biology, Cambridge, MA, USA.

出版信息

bioRxiv. 2023 Feb 20:2023.01.18.524545. doi: 10.1101/2023.01.18.524545.

Abstract

Clear cell renal cell carcinoma (ccRCC) is molecularly heterogeneous, immune infiltrated, and selectively sensitive to immune checkpoint inhibition (ICI). Established histopathology paradigms like nuclear grade have baseline prognostic relevance for ccRCC, although whether existing or novel histologic features encode additional heterogeneous biological and clinical states in ccRCC is uncertain. Here, we developed spatially aware deep learning models of tumor- and immune-related features to learn representations of ccRCC tumors using diagnostic whole-slide images (WSI) in untreated and treated contexts (n = 1102 patients). We discovered patterns of nuclear grade heterogeneity in WSI not achievable through human pathologist analysis, and these graph-based "microheterogeneity" structures associated with PBRM1 loss of function, adverse clinical factors, and selective patient response to ICI. Joint computer vision analysis of tumor phenotypes with inferred tumor infiltrating lymphocyte density identified a further subpopulation of highly infiltrated, microheterogeneous tumors responsive to ICI. In paired multiplex immunofluorescence images of ccRCC, microheterogeneity associated with greater PD1 activation in CD8+ lymphocytes and increased tumor-immune interactions. Thus, our work reveals novel spatially interacting tumor-immune structures underlying ccRCC biology that can also inform selective response to ICI.

摘要

透明细胞肾细胞癌(ccRCC)在分子水平上具有异质性,有免疫浸润,且对免疫检查点抑制(ICI)具有选择性敏感性。像核分级这样既定的组织病理学范式对ccRCC具有基线预后相关性,尽管现有或新的组织学特征是否编码ccRCC中其他异质性生物学和临床状态尚不确定。在此,我们开发了肿瘤和免疫相关特征的空间感知深度学习模型,以使用未治疗和治疗情况下的诊断性全切片图像(WSI)(n = 1102例患者)来学习ccRCC肿瘤的表征。我们发现了通过人类病理学家分析无法实现的WSI中的核分级异质性模式,并且这些基于图谱的“微异质性”结构与PBRM1功能丧失、不良临床因素以及患者对ICI的选择性反应相关。对肿瘤表型与推断的肿瘤浸润淋巴细胞密度进行联合计算机视觉分析,确定了对ICI有反应的高度浸润、微异质性肿瘤的另一个亚群。在ccRCC的配对多重免疫荧光图像中,微异质性与CD8 +淋巴细胞中更大的PD1激活以及增加的肿瘤 - 免疫相互作用相关。因此,我们的工作揭示了ccRCC生物学基础上新的空间相互作用的肿瘤 - 免疫结构,这也可以为对ICI的选择性反应提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ca/9946034/32af6723a383/nihpp-2023.01.18.524545v2-f0007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验