PathAI, Inc., Boston, MA, USA.
Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA.
Nat Commun. 2021 Mar 12;12(1):1613. doi: 10.1038/s41467-021-21896-9.
Computational methods have made substantial progress in improving the accuracy and throughput of pathology workflows for diagnostic, prognostic, and genomic prediction. Still, lack of interpretability remains a significant barrier to clinical integration. We present an approach for predicting clinically-relevant molecular phenotypes from whole-slide histopathology images using human-interpretable image features (HIFs). Our method leverages >1.6 million annotations from board-certified pathologists across >5700 samples to train deep learning models for cell and tissue classification that can exhaustively map whole-slide images at two and four micron-resolution. Cell- and tissue-type model outputs are combined into 607 HIFs that quantify specific and biologically-relevant characteristics across five cancer types. We demonstrate that these HIFs correlate with well-known markers of the tumor microenvironment and can predict diverse molecular signatures (AUROC 0.601-0.864), including expression of four immune checkpoint proteins and homologous recombination deficiency, with performance comparable to 'black-box' methods. Our HIF-based approach provides a comprehensive, quantitative, and interpretable window into the composition and spatial architecture of the tumor microenvironment.
计算方法在提高病理学工作流程的准确性和效率方面取得了重大进展,可用于诊断、预后和基因组预测。然而,可解释性的缺乏仍然是临床整合的一个重大障碍。我们提出了一种使用可解释的图像特征(HIFs)从全切片组织病理学图像预测临床相关分子表型的方法。我们的方法利用来自超过 5700 个样本的 160 多万个注释,训练用于细胞和组织分类的深度学习模型,这些模型可以在 2 微米和 4 微米的分辨率下详尽地映射全切片图像。细胞和组织类型模型的输出被组合成 607 个 HIFs,这些 HIFs量化了五种癌症类型中特定的和生物学相关的特征。我们证明这些 HIFs与肿瘤微环境的已知标志物相关,并可以预测多种分子特征(AUROC 0.601-0.864),包括四个免疫检查点蛋白和同源重组缺陷的表达,性能可与“黑盒”方法相媲美。我们基于 HIF 的方法为肿瘤微环境的组成和空间结构提供了一个全面、定量和可解释的窗口。