Dana-Farber Cancer Institute, Boston, Massachusetts.
Weill Cornell Medicine, New York, New York.
Mol Cancer Res. 2022 Feb;20(2):202-206. doi: 10.1158/1541-7786.MCR-21-0665. Epub 2021 Dec 8.
Imaging datasets in cancer research are growing exponentially in both quantity and information density. These massive datasets may enable derivation of insights for cancer research and clinical care, but only if researchers are equipped with the tools to leverage advanced computational analysis approaches such as machine learning and artificial intelligence. In this work, we highlight three themes to guide development of such computational tools: scalability, standardization, and ease of use. We then apply these principles to develop PathML, a general-purpose research toolkit for computational pathology. We describe the design of the PathML framework and demonstrate applications in diverse use cases. PathML is publicly available at www.pathml.com.
癌症研究中的成像数据集在数量和信息密度上都呈指数级增长。这些大规模数据集可能为癌症研究和临床护理提供新的见解,但前提是研究人员具备利用机器学习和人工智能等先进计算分析方法的工具。在这项工作中,我们强调了三个主题,以指导此类计算工具的开发:可扩展性、标准化和易用性。然后,我们应用这些原则开发了 PathML,这是一种用于计算病理学的通用研究工具包。我们描述了 PathML 框架的设计,并展示了在各种用例中的应用。PathML 可在 www.pathml.com 上获得。