Department of Pathology, Stanford University, Stanford, CA, USA.
Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.
Nat Commun. 2023 Aug 1;14(1):4618. doi: 10.1038/s41467-023-40068-5.
While technologies for multiplexed imaging have provided an unprecedented understanding of tissue composition in health and disease, interpreting this data remains a significant computational challenge. To understand the spatial organization of tissue and how it relates to disease processes, imaging studies typically focus on cell-level phenotypes. However, images can capture biologically important objects that are outside of cells, such as the extracellular matrix. Here, we describe a pipeline, Pixie, that achieves robust and quantitative annotation of pixel-level features using unsupervised clustering and show its application across a variety of biological contexts and multiplexed imaging platforms. Furthermore, current cell phenotyping strategies that rely on unsupervised clustering can be labor intensive and require large amounts of manual cluster adjustments. We demonstrate how pixel clusters that lie within cells can be used to improve cell annotations. We comprehensively evaluate pre-processing steps and parameter choices to optimize clustering performance and quantify the reproducibility of our method. Importantly, Pixie is open source and easily customizable through a user-friendly interface.
虽然用于多重成像的技术为了解健康和疾病中的组织成分提供了前所未有的认识,但解释这些数据仍然是一个重大的计算挑战。为了了解组织的空间组织及其与疾病过程的关系,成像研究通常侧重于细胞水平的表型。然而,图像可以捕获细胞外的生物学上重要的物体,例如细胞外基质。在这里,我们描述了一个名为 Pixie 的流水线,它使用无监督聚类实现了像素级特征的稳健和定量注释,并展示了它在各种生物背景和多重成像平台中的应用。此外,目前依赖无监督聚类的细胞表型策略可能需要大量的人工聚类调整,并且劳动强度大。我们展示了如何使用位于细胞内的像素聚类来改进细胞注释。我们全面评估了预处理步骤和参数选择,以优化聚类性能,并量化我们方法的可重复性。重要的是,Pixie 是开源的,并且通过用户友好的界面可以轻松定制。