Suppr超能文献

通过识别抗真菌的辣椒二烯醇来鉴定宿主植物,从而诱导特定解毒基因的表达。

identifies host plants via the recognition of antifungal capsidiol to induce expression of a specific detoxification gene.

作者信息

Kuroyanagi Teruhiko, Bulasag Abriel Salaria, Fukushima Keita, Ashida Akira, Suzuki Takamasa, Tanaka Aiko, Camagna Maurizio, Sato Ikuo, Chiba Sotaro, Ojika Makoto, Takemoto Daigo

机构信息

Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.

College of Arts and Sciences, University of the Philippines Los Baños, Los Baños, Laguna 4031, Philippines.

出版信息

PNAS Nexus. 2022 Dec 21;1(5):pgac274. doi: 10.1093/pnasnexus/pgac274. eCollection 2022 Nov.

Abstract

The gray mold pathogen has a broad host range, causing disease in >400 plant species, but it is not known how this pathogen evolved this polyxenous nature. can metabolize a wide range of phytoalexins, including the stilbenoid resveratrol in grape, and the sesquiterpenoids capsidiol in tobacco and rishitin in potato and tomato. In this study, we analyzed the metabolism of sesquiterpenoid phytoalexins by . Capsidiol was dehydrogenated to capsenone, which was then further oxidized, while rishitin was directly oxidized to epoxy- or hydroxyrishitins, indicating that has separate mechanisms to detoxify structurally similar sesquiterpenoid phytoalexins. RNA-seq analysis revealed that a distinct set of genes were induced in when treated with capsidiol or rishitin, suggesting that can distinguish structurally similar phytoalexins to activate appropriate detoxification mechanisms. The gene most highly upregulated by capsidiol treatment encoded a dehydrogenase, designated . Heterologous expression of in a capsidiol-sensitive plant symbiotic fungus, , resulted in an acquired tolerance of capsidiol and the ability to metabolize capsidiol to capsenone, while mutants became relatively sensitive to capsidiol. The mutant showed reduced virulence on the capsidiol producing and species but remained fully pathogenic on potato and tomato. Homologs of are found in taxonomically distant Ascomycota fungi but not in related Leotiomycetes species, suggesting that acquired the ancestral by horizontal gene transfer, thereby extending the pathogenic host range of this polyxenous pathogen to capsidiol-producing plant species.

摘要

灰霉病菌具有广泛的寄主范围,可在400多种植物物种中引发病害,但尚不清楚该病原菌是如何进化出这种多寄主特性的。它能够代谢多种植物抗毒素,包括葡萄中的芪类白藜芦醇、烟草中的倍半萜类辣椒二萜醇以及马铃薯和番茄中的日齐素。在本研究中,我们分析了[病原菌名称]对倍半萜类植物抗毒素的代谢情况。辣椒二萜醇被脱氢生成辣椒酮,然后进一步氧化,而日齐素则直接被氧化为环氧日齐素或羟基日齐素,这表明[病原菌名称]具有不同的机制来解毒结构相似的倍半萜类植物抗毒素。RNA测序分析表明,用辣椒二萜醇或日齐素处理[病原菌名称]时,会诱导一组不同的基因,这表明[病原菌名称]能够区分结构相似的植物抗毒素,以激活适当的解毒机制。辣椒二萜醇处理后上调程度最高的基因编码一种脱氢酶,命名为[酶名称]。在对辣椒二萜醇敏感的植物共生真菌[真菌名称]中异源表达[酶名称],导致其获得了对辣椒二萜醇的耐受性,并具备将辣椒二萜醇代谢为辣椒酮的能力,而[酶名称]突变体对辣椒二萜醇变得相对敏感。[酶名称]突变体在产生辣椒二萜醇的[植物名称1]和[植物名称2]物种上的毒力降低,但对马铃薯和番茄仍具有完全致病性。在分类学上距离较远的子囊菌真菌中发现了[酶名称]的同源物,但在相关的柔膜菌纲物种中未发现,这表明[病原菌名称]通过水平基因转移获得了祖先的[酶名称],从而将这种多寄主病原菌的致病寄主范围扩展到了产生辣椒二萜醇的植物物种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74dc/9802192/c0396f2d971d/pgac274fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验