Division of Cardiovascular Medicine, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
Department of Biomedical Imaging and Radiologic Science, China Medical University, Taichung, Taiwan.
Can J Cardiol. 2021 Jan;37(1):94-104. doi: 10.1016/j.cjca.2020.02.096. Epub 2020 Mar 5.
Deep-learning algorithms to annotate electrocardiograms (ECGs) and classify different types of cardiac arrhythmias with the use of a single-lead ECG input data set have been developed. It remains to be determined whether these algorithms can be generalized to 12-lead ECG-based rhythm classification.
We used a long short-term memory (LSTM) model to detect 12 heart rhythm classes with the use of 65,932 digital 12-lead ECG signals from 38,899 patients, using annotations obtained by consensus of 3 board-certified electrophysiologists as the criterion standard.
The accuracy of the LSTM model for the classification of each of the 12 heart rhythms was ≥ 0.982 (range 0.982-1.0), with an area under the receiver operating characteristic curve of ≥ 0.987 (range 0.987-1.0). The precision and recall ranged from 0.692 to 1 and from 0.625 to 1, respectively, with an F score of ≥ 0.777 (range 0.777-1.0). The accuracy of the model (0.90) was superior to the mean accuracies of internists (0.55), emergency physicians (0.73), and cardiologists (0.83).
We demonstrated the feasibility and effectiveness of the deep-learning LSTM model for interpreting 12 common heart rhythms according to 12-lead ECG signals. The findings may have clinical relevance for the early diagnosis of cardiac rhythm disorders.
已经开发出了使用单导联心电图输入数据集对心电图 (ECG) 进行注释和对不同类型的心律失常进行分类的深度学习算法。这些算法是否可以推广到基于 12 导联心电图的节律分类尚待确定。
我们使用长短期记忆 (LSTM) 模型,使用来自 38899 名患者的 65932 个数字 12 导联心电图信号,通过 3 位具有董事会认证的电生理学家的共识注释作为标准来检测 12 种心律类别。
LSTM 模型对 12 种心律的分类准确性均≥0.982(范围 0.982-1.0),受试者工作特征曲线下面积均≥0.987(范围 0.987-1.0)。精度和召回率范围分别为 0.692 到 1 和 0.625 到 1,F 分数均≥0.777(范围 0.777-1.0)。模型的准确性(0.90)优于内科医生(0.55)、急诊医生(0.73)和心脏病专家(0.83)的平均准确率。
我们证明了深度学习 LSTM 模型根据 12 导联心电图信号解释 12 种常见心律的可行性和有效性。这些发现可能对心律失常的早期诊断具有临床意义。