Suppr超能文献

一种用于合成用于硬质聚(聚氨酯 - 脲)混合泡沫应用的椰子油衍生生物多元醇的新型反应机制。

A novel reaction mechanism for the synthesis of coconut oil-derived biopolyol for rigid poly(urethane-urea) hybrid foam application.

作者信息

Dingcong Roger G, Malaluan Roberto M, Alguno Arnold C, Estrada Dave Joseph E, Lubguban Alona A, Resurreccion Eleazer P, Dumancas Gerard G, Al-Moameri Harith H, Lubguban Arnold A

机构信息

Center for Sustainable Polymers, Mindanao State University - Iligan Institute of Technology Iligan City 9200 Philippines

Department of Chemical Engineering and Technology, Mindanao State University - Iligan Institute of Technology Iligan City 9200 Philippines.

出版信息

RSC Adv. 2023 Jan 11;13(3):1985-1994. doi: 10.1039/d2ra06776e. eCollection 2023 Jan 6.

Abstract

Coconut oil (CO) has become one of the most important renewable raw materials for polyol synthesis due to its abundance and low price. However, the saturated chemical structure of CO limits its capability for functionalization. In this study, a novel reaction mechanism the sequential glycerolysis and amidation of CO triglycerides produced an amine-based polyol (p-CDEA). The synthesized biopolyol has a relatively higher hydroxyl value of 361 mg KOH per g relative to previously reported CO-based polyols with values ranging from 270-333 mg KOH per g. This primary hydroxyl-rich p-CDEA was used directly as a sole B-side polyol component in a polyurethane-forming reaction, without further purification. Results showed that a high-performance poly(urethane-urea) (PUA) hybrid foam was successfully produced. It has a compressive strength of 226 kPa and thermal conductivity of 23.2 mW (m K), classified as type 1 for a rigid structural sandwich panel core and type 2 for rigid thermal insulation foam applications according to ASTM standards. Fourier-transform infrared (FTIR) spectroscopy was performed to characterize the chemical features of the polyols and foams. Scanning electron microscopy (SEM) analysis was also performed to evaluate the morphological structures of the synthesized foams. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were conducted to investigate the foam's thermal characteristics. Thus far, this work is the first to report a novel and effective reaction mechanism for the synthesis of a highly functional CO-derived polyol and the first CO-based polyol with no petroleum-based replacement that may serve as raw material for rigid PUA foam production. PUA hybrid foams are potential insulation and structural materials. This study further provided a compelling case for enhanced sustainability of p-CDEA PUA hybrid foam against petroleum-based polyurethane.

摘要

由于椰子油(CO)储量丰富且价格低廉,它已成为多元醇合成中最重要的可再生原料之一。然而,CO的饱和化学结构限制了其功能化能力。在本研究中,一种新颖的反应机制——CO甘油三酯的连续甘油解和酰胺化反应生成了一种胺基多元醇(p-CDEA)。相对于先前报道的CO基多元醇(其羟值范围为每克270 - 333毫克KOH),合成的生物多元醇具有相对较高的羟值,为每克361毫克KOH。这种富含伯羟基的p-CDEA在聚氨酯形成反应中直接用作唯一的B侧多元醇组分,无需进一步纯化。结果表明,成功制备了一种高性能的聚(聚氨酯-脲)(PUA)混合泡沫。它的抗压强度为226 kPa,热导率为23.2 mW/(m·K),根据ASTM标准,对于刚性结构夹芯板芯材属于1型,对于刚性保温泡沫应用属于2型。采用傅里叶变换红外(FTIR)光谱对多元醇和泡沫的化学特征进行了表征。还进行了扫描电子显微镜(SEM)分析以评估合成泡沫的形态结构。进行了差示扫描量热法(DSC)和热重分析(TGA)以研究泡沫的热特性。到目前为止,这项工作首次报道了一种新颖有效的反应机制,用于合成高功能性的CO衍生多元醇,也是第一种无需石油基替代品的CO基多元醇,可作为刚性PUA泡沫生产的原料。PUA混合泡沫是潜在的保温和结构材料。本研究进一步有力地证明了p-CDEA PUA混合泡沫相对于石油基聚氨酯具有更高的可持续性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/969e/9832577/8030eb25fb74/d2ra06776e-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验